
Unifying Classification Schemes for Languages and Processes

With Attention to Locality and Relativizations Thereof

A Dissertation Presented

by

Dakotah Jay Lambert

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Linguistics

Stony Brook University

May 2022

Copyright by Dakotah Jay Lambert

2022

Stony Brook University

The Graduate School

Dakotah Jay Lambert

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Jeffrey Heinz — Dissertation Advisor
Professor, Department of Linguistics

and Institute for Advanced Computational Science

Thomas Graf — Chairperson of Defense
Associate Professor, Department of Linguistics

Jordan Kodner
Assistant Professor, Department of Linguistics

James Rogers
Professor Emeritus, Department of Computer Science, Earlham College

This dissertation is accepted by the Graduate School

Eric Wertheimer
Dean of the Graduate School

ii

Abstract of the Dissertation

Unifying Classification Schemes for Languages and Processes

With Attention to Locality and Relativizations Thereof

by

Dakotah Jay Lambert

Doctor of Philosophy

in

Linguistics

Stony Brook University

2022

This dissertation synthesizes research in abstract algebra, computer science, and
linguistics to better characterize properties of natural languages. The first contribution
is a thorough explanation of how a traditional linguistic treatment of nonlocality
(relativized adjacency) fits into existing computational treatments of sequential
patterns. The second is a classification scheme unifying multiple complexity
hierarchies proposed in prior literature. The third is an extension of this scheme
to functions and other transformations. The importance of these results lies in
their explanatory power. They provide a lower upper bound on the complexity of
linguistic generalizations than has been proposed before and help to explain how any
mechanism, human or machine, can learn these patterns from small amounts of data.
Moreover they provide a basis for developing new algorithms for processing language,
simplifying the task by taking advantage of their fundamental properties. Because
these characterizations are grounded in algebraic theory, they draw tighter and clearer
connections between the formal descriptions of language used by computer scientists
and linguists.

iii

CONTENTS

List of Figures viii

List of Tables xi

List of Symbols xii

Acknowledgments xiii

1 Introduction 1
1.1 Review of the Literature . 1
1.2 Outline of the Dissertation . 6

I 9

2 Formal Languages and String Acceptors 10
2.1 Notation . 10
2.2 Formal Language Theory . 10
2.3 Finite Model Theory . 11
2.4 Graphs and Finite-State Automata 15
2.5 Transition Semigroups and Syntactic Monoids 16

2.5.1 Equivalence Relations . 17
2.5.2 Monoid Construction . 19

2.6 Conclusions . 20

3 Characterizing Tier-Based Subregular Classes 21
3.1 Model Theoretic Descriptions . 22
3.2 Language-Theoretic Characterizations 25

3.2.1 Strict Locality . 25
3.2.2 Complements . 27
3.2.3 Local Testability . 28
3.2.4 Threshold Testability . 29
3.2.5 Piecewise Relativizations 29

3.3 Automata . 30
3.3.1 Characterizations . 30

iv

3.3.2 Constructions . 31
3.4 Closure Properties . 35

3.4.1 Products . 35
3.4.2 Complements of Automata 36
3.4.3 Some Non-Closures . 37

3.5 Algebra . 38
3.5.1 Strictly Local Stringsets and Their Complements 39
3.5.2 Locally Testable Stringsets 41
3.5.3 Locally Threshold Testable Stringsets 41

3.6 Conclusions . 42

4 Monoid Varieties and a Subregular Spiral 44
4.1 Green’s Relations and a Basic Hierarchy 44
4.2 A First Expansion: DA . 50
4.3 Piecewise Testable Languages and Subclasses 51
4.4 Equations, Varieties, and a Cloned Hierarchy 53

4.4.1 Locally DA . 56
4.4.2 Locally L- or R-Trivial 57
4.4.3 LocallyJ-Trivial . 58
4.4.4 Locally Aperiodic and Commutative 58
4.4.5 Locally Trivial . 59

4.5 Tier-Based Classes . 63
4.6 Conclusions . 64

5 Classifying Functions 67
5.1 Structures and Machines . 68

5.1.1 String Acceptors . 68
5.1.2 String-to-String Transducers 68
5.1.3 Constructing Monoids from Canonical Machines 70
5.1.4 Definite Algebraic Structure 72

5.2 Input Strictly Local Functions . 73
5.3 Output Strictly Local Functions . 75
5.4 Harmony: Not Strictly Local . 78
5.5 Ambiguous and Two-Way Transducers 81
5.6 Conclusions . 86

II 88

6 Learning Tier-Based Strictly Local Languages 89

v

6.1 Preliminaries . 90
6.1.1 (Tier-Based) Strict Locality 90
6.1.2 Our Learning Problem . 90
6.1.3 String Extension Learning 91

6.2 Deciding Salience . 92
6.3 The Substructures . 93
6.4 Pointwise String Extension Learning 94
6.5 A Worked Example of the Final Simplified Approach 96
6.6 Non-Strict Locality . 97
6.7 Conclusions . 98

7 Tree Acceptors as Ordered Directed Hypergraphs 100
7.1 Background . 100

7.1.1 Trees . 101
7.1.2 Finite-State Acceptors . 101
7.1.3 Directed Graphs and Extensions Thereof 102

7.2 Ordered Directed Hypergraphs . 104
7.3 Decisions and Operations . 106

7.3.1 Reachability and Satisfiability 107
7.3.2 Determinization . 107
7.3.3 Minimization . 108
7.3.4 Completion and Trimming 109
7.3.5 Finiteness . 110
7.3.6 Boolean Operations . 111

7.4 Conclusions . 112

8 Accumulators and the Problems They Bring 113
8.1 Parsing as a Monoid . 113
8.2 Going Further: Turing Completeness 117
8.3 Conclusions . 118

9 The Language Toolkit 119
9.1 Construction: The PLEB Language 119

9.1.1 Basic Syntax . 119
9.1.2 Variadic Operators . 122
9.1.3 Monadic Operators . 122
9.1.4 Remarks . 123

9.2 Interacting with the Interpreter . 124
9.2.1 Interpreter Basics . 124
9.2.2 Saving and Loading . 124

vi

9.2.3 Determining the Class of an Expression 125
9.2.4 Grammatical Inference . 129
9.2.5 Comparing Expressions 129
9.2.6 Graphical Output . 130
9.2.7 Generating Dot Files Without Displaying Them 130
9.2.8 Operations on the Environment 130
9.2.9 Remarks . 131

9.3 Factoring Patterns . 132
9.4 Companion Software . 134
9.5 Conclusions . 134

10 Conclusions 135

Bibliography 138

Index 154

A Constraints Classified 156
A.1 Local Constraints . 156
A.2 Harmonies . 157
A.3 Counting Symbols . 158
A.4 Tone Plateauing . 158
A.5 Uyghur Backness Harmony . 159
A.6 Conclusions . 160

vii

LIST OF FIGURES

1.1 A suggested reading order. 8

2.1 Precedence and successor models of “ababc”. 12
2.2 Two three-windows of “ababc” for the same factor. 14
2.3 The piecewise-local subregular hierarchy. 15
2.4 Even-𝑎 as a string acceptor. 16
2.5 “Contains 𝑎𝑏” as a string acceptor. 18
2.6 Syntactic monoid of "contains 𝑎𝑏". 20

3.1 The piecewise-local subregular hierarchy with tiers. 22
3.2 Word models for “ababc”. 23
3.3 3-factors of “⋊ababc⋉”. 24
3.4 A canonical dfa for which 𝑑 is a nonsalient symbol. 31
3.5 The powerset graph of Figure 3.4. 32
3.6 Canonical aaa for the factor “xyx” under <. 33
3.7 Canonical automata for head-anchored factors. 34
3.8 Constructing “xyx” as an aaa under ◁. 34
3.9 Relativizing “xyx” to T = {x, y, z}. 35
3.10 The syntactic semigroup of Figure 3.4. 40

4.1 Every element of a finite semigroup eventually generates a group. . 46
4.2 A basic five-class hierarchy below star-free. 46
4.3 Egg-box for “contains 𝑎 not followed by 𝑏 . . . 𝑐” 47
4.4 Egg-box for “start with 𝑎, first consonant is 𝑏”. 48
4.5 Egg-box for “contains 𝑎𝑏”. 49
4.6 Egg-box of “begins with 𝑎 and ends with 𝑏”. 50
4.7 The basic hierarchy augmented with DA. 51
4.8 Egg-box for “contains 𝑎 . . . 𝑏”. 51
4.9 The hierarchy augmented with Acom and JI. 52
4.10 The hierarchy cloned to include local varieties. 55
4.11 Egg-box for “contains 𝑎 not preceding 𝑏𝑐 and 𝑐 not following 𝑎𝑏”. . 56
4.12 A language in LL separating this class from LR and DA. 57
4.13 A language in DA but not LL, proving incomparability 57
4.14 A language in LAcom but not LJI or DA. 59
4.15 The hierarchy including sub-L1 classes and 𝑀𝑒-based connections. . 62

viii

4.16 The full algebraic hierarchy. 66

5.1 Acceptors induced by N∼ and M∼ for “no 𝑎𝑏”. 69
5.2 Transducer and monoid for “T becomes D directly between two V”. 72
5.3 A non-isl function composed from two isl functions. 75
5.4 Iterative spreading of nasality: an output strictly local function. . . . 76
5.5 Nondeterministic transducer for oppositeward nasal spreading. . . . 77
5.6 Periodic 2-osl function and its monoid. 77
5.7 A transducer derived from Table 5.3. 78
5.8 Samala sibilant harmony: acceptor and transducer 79
5.9 A variant of Samala sibilant harmony with blockers 80
5.10 A symmetric (left) and an asymmetric (right) override of harmony. . 81
5.11 High-tone plateauing as a one-way nondeterministic machine. . . . 82
5.12 Transition monoid for the one-way high-tone plateauing. 82
5.13 High-tone plateauing decomposed into two sequential functions. . . 83
5.14 High-tone plateauing as a two-way transducer. 84
5.15 Monoid generated from Figure 5.14. 84
5.16 Nondeterministic transducer for Tutrugbu atr harmony. 85
5.17 Tutrugbu atr harmony with separate symbols for roots and affixes. 86
5.18 Some attested morphophonological functions. 87

6.1 The tier-successor relation on “nasitiʃ”. 93
6.2 Space requirements for learning over a binary alphabet. 98

7.1 Accepting a tree. 102
7.2 Even-𝑎 as a string acceptor. 103
7.3 S→ aSb and S→ ab as an unlabeled directed hypergraph. 103
7.4 S→ aSb and S→ ab as a labeled ordered directed hypergraph. . . 105
7.5 A tabular representation of Figure 7.4. 105
7.6 A tree acceptor for Boolean expressions over two variables. 106
7.7 The tabular representation of Figure 7.6. 106
7.8 An ordered directed hypergraph representing Figure 7.2. 107
7.9 A nonminimal dbfta. 108
7.10 A minimal form of Figure 7.9. 109
7.11 Instantiating ⃝? for a rank-3 S. 110
7.12 A dbfta and its associated connection graph. 111

8.1 Parses for “()()” and “(())”. 114
8.2 Basic shape of the parsing matrix. 115
8.3 Parsed “0the1girl2saw3the4crow5”. 115
8.4 Parsed “0the1girl2saw3the4crow5with6the7binoculars8”. 116

ix

9.1 Three definitions for one language over Σ = {a, b}, and semantics. . 124
9.2 Hierarchy of classes for which decision algorithms are provided. . . 126
9.3 A dfa that can be factored. 132
9.4 The result of factoring Figure 9.3. 133

x

LIST OF TABLES

4.1 Equations defining our basic hierarchy. 54
4.2 A summary of algebraic classes and their characterizations. 65

5.1 Cayley table for syntactic semigroups in Figures 5.1 and 5.2. 71
5.2 A Cayley table for nasal spreading, after tier restriction. 76
5.3 An arbitrary syntactic semigroup. 78
5.4 Local subsemigroups from harmony with blockers. 80
5.5 Behaviors of high-tone plateauing. 83
5.6 The Cayley table of Figure 5.15, idempotents highlighted. 84

6.1 Augmented subsequences of “cabacba”. 95
6.2 Words sufficient to learn Slovenian sibilant assimilation. 97

9.1 Equivalent ascii syntax for pleb. 123

xi

LIST OF SYMBOLS

𝟙 Characteristic function
A Automaton
B Booleans
BC Boolean closure of C
∁𝑆 Complement of 𝑆
D Green’s D relation
F𝑘 𝑘-wide factors
G Grammars
G Fich and Brzozowski’s G relation
H Green’s H relation
I Interveners
J Green’sJ relation
LV Locally V
L Green’s L relation
lcp Longest common prefix
M Word model
M∼ Myhill equivalence
N Natural numbers
N∼ Nerode equivalence
P(𝑆) Powerset of 𝑆
R Green’s R relation
Suff𝑘 𝑘-long suffix
T Texts
⇀
T Initial segments of texts
W𝑅
𝑎 𝑎-wide windows over relation 𝑅

X(𝐺) Extensions (language) of 𝐺

Δ Output alphabet
𝛿 Transition function
𝜀 Empty sequence
𝜆 Labeling function
𝜋T Projection to T
𝜌 Transducer prefix
Σ (Input) alphabet
Σ+ Nonempty finite words over Σ
Σ∗ Finite words over Σ
𝜎 Transducer suffix
T Tier alphabet
𝑥𝜔 Unique idempotent power of 𝑥(𝑛
𝑟

)
Combinations of 𝑟 elements of 𝑛

⟦𝑥⟧ Interpretation of 𝑥
⟦V⟧T Tier-based relativization of V
P. . .Q Multiset
𝑚 ↾ 𝑥 Restriction to 𝑥 of 𝑚
⊚ No data
⃝? Wildcard
◁ Successor
◁𝜑 Relativized successor
< Precedence
<𝜑 Relativized precedence
⋊ Word boundary, left
⋉ Word boundary, right
𝑆/∼ Quotient of 𝑆 by ∼

xii

ACKNOWLEDGMENTS

I would like to take a moment to thank those who have, directly or indirectly,
contributed to the creation of this dissertation. Those who have guided me on
my mathematical journey include Angela Karch, Tim McLarnan, Julie Beier, and
Jim Rogers. I also must extend gratitude to Jon Rawski, for being an inspirational
office-mate and in general a wonderful person to work with, and also to Scott
Nelson and Aniello De Santo for putting up with my excited ramblings about new
discoveries. My work in mathematical linguistics proper would never have begun
without the welcoming introduction by Sean Wibel and Margaret Fero. Nor could
it have continued without joint work and guidance from Jeff Heinz and, again, Jim
Rogers. The value of the support of Stony Brook’s iacs could not be overstated.
Finally I must thank my family. Including the fat potato of a cat, for warmth and
companionship. To all those mentioned here and many others, I am eternally grateful.

xiii

1: INTRODUCTION

The complexity of a language determines what kinds of mechanisms, cognitive
or computational, are required in order to learn it, or in order to verify whether it
contains a given form. The classical Chomsky hierarchy partitions languages into
four groups by what kinds of computation define them (Chomsky, 1959): unrestricted
computation (type 0), context-sensitive rewriting (type 1), context-free rewriting
(type 2), and regular expressions (type 3). Each is contained in the previous; all
type 3 languages are also type 2 languages. There was no type 4, but even still we
encounter plenty of patterns that do not need the full power of regular expressions.
As a result, many subregular hierarchies have been explored, some defined by
restricted applications of formal logic, others defined by the containment of subparts
(c.f. McNaughton and Papert, 1971). This dissertation uses algebraic methods (c.f.
Pin, 1997) to unify some of these subregular hierarchies, as well as to extend their
application from languages to functions and relations. With this unified classification
scheme, I show that the upper bound on the complexity of linguistic generalizations
which govern systematic variation in the pronunciation of related words is lower than
previously thought (Heinz, 2018; Lamont, 2018).

Throughout this document, several linguistic generalizations are discussed. These
often serve as examples of class inhabitants or demonstrations of particular techniques.
The generalizations are taken as reported, and none of them have been checked for
veracity against the original data. It should also be noted that symbols as described
throughout this work need not be individual phonemes. The set of symbols used to
describe a pattern needs only partition the space of possible segments into finitely
many categories. Examples are often given in terms of abstract variables, which
refer essentially to natural classes, modified appropriately to avoid overlap.

In brief, this dissertation unifies subregular hierarchies explored by linguists and
by theoretical computer scientists using algebraic methods. The unified classification
scheme is applied to various patterns in natural language in order to propose a lower
upper bound on complexity than ever before. Finally directions for future research,
especially regarding extension of these methods to patterns over trees, are discussed.
The algorithms described are not merely theoretical. All algorithms discussed in this
dissertation are implemented in software, documented in Chapter 9.

1.1 Review of the Literature
Finite-state machines formalize the notion of a constant memory bound and have
been widely used for decades in both computer science (c.f. Thompson, 1968) and

1

linguistics (c.f. Mohri, 1997). Using different properties of the machines or of
the formal languages they represent, we can discover a great deal about languages,
including their complexity (Rogers et al., 2012) or how they relate to one another
(Clark and Roberts, 1993). Kleene (1956) introduces the regular languages and
associates them with finite-state automata. A subregular class of languages is any
class that can be defined by such machines without using the full power afforded by
the formalism. McNaughton and Papert (1971) discuss formal languages built around
local dependencies: the strictly local and locally testable classes. These languages
have some nice properties: they are efficiently learnable, efficiently testable, and
closed under intersection (and thus usable as constraints) (Heinz, 2010b; Rogers et al.,
2012). Indeed, these classes were studied for their relative simplicity compared to the
regular languages, requiring no modulo-counting mechanism. The locally threshold
testable class of Beauquier and Pin (1989), equivalent to the class of generalized
locally testable languages of (Thomas, 1982), lies between regular and locally testable
allowing for counting of local structures. Local constraints can’t handle everything,
however, and phonology is full of patterns outside of these classes, such as the
stress pattern of Yidin (Goedemans et al., 2015; Lambert and Rogers, 2019), the
asymmetric sibilant harmony of Tsuut’ina1 (Heinz, 2010a), or the tone plateauing of
Luganda2 (Hyman and Katamba, 1993). None of these are representable even by
locally threshold testable descriptions. They can be analyzed by star-free languages
(also known as group-free, locally testable with order, or noncounting), but often a
simpler analysis is possible.

All of these difficult patterns invoke long-distance dependencies. The piecewise
testable languages of Simon (1975) directly encode this type of dependency. Mirroring
the strictly local restriction of the locally testable languages, the piecewise testable
class can be restricted to a strictly piecewise class (Rogers et al., 2010, see also
Haines, 1969). There is no distinct piecewise threshold testable class; it is equivalent
to piecewise testable (Lambert et al., 2021).

When a 𝑘-strictly local (𝑘-sl) model is applicable, it offers a standard and
extremely simple mechanism for learning. Under such a model, a word is valid
if (and only if) all of its 𝑘-long substrings are attested. This is perfectly suitable
for capturing some types of linguistic patterns, such as the strict consonant-vowel
alternation embodied in some languages. Such a model is heavily restricted, though,
in that it can only account for local dependencies. Long-distance constraints cannot
be adequately described by such a system. Rather than move to a piecewise
class, one could extend the local system to account for long-distance constraints
by considering what would be adjacent if only we could ignore irrelevant symbols

1An Athabaskan language spoken in Alberta, Canada; formerly known by the exonym “Sarcee”.
2A Bantu language spoken in Uganda.

2

(Heinz et al., 2011). In other words, we restrict to some tier of salient symbols. This
essentially incorporates a system based on popular feature geometry models such as
those discussed by McCarthy (1988). There is no corresponding tier-based strictly
piecewise class, because the general precedence relation is neither strengthened nor
weakened by the ability to ignore specific symbols. The naturalness and power of
tier-based descriptions has caused them to be widely used and extended (McMullin,
2016; Jardine and McMullin, 2017; Aksënova and Deshmukh, 2018; De Santo and
Graf, 2019; Lambert, 2021). Mayer and Major (2018) even discuss a hypothesis
that all phonological patterns are tier-based strictly local, then go on to provide a
counterexample. This should come as no surprise; the tone plateauing of Luganda
is also outside of this class, unless we assume a representation that removes the
unrepresentable long-distance dependencies, like the autosegmental representation
explored by Jardine (2019).

The piecewise-local subregular hierarchy is a partial order of language classes
which can be described via the successor or general precedence relations using at
most monadic second-order logic (Büchi, 1960; Elgot, 1961; Трахтенброт, 1962).
A brief review was given by Rogers et al. (2012). Tier-based languages are defined
by the transitive reduct of a particular restriction of the general precedence relation.
A subset of the piecewise-local classes form a grid, where one axis describes the
types of factors in use and the other describes the kinds of distinctions made. Other
classes fit less neatly into such a paradigm.

In contrast to previous research in phonology, I do not wish to seek a class that
contains everything. Instead, a focus on classification is important, as each class has
a set of associated properties, and that can tell us a lot about the patterns we see.
Patterns may be described in several equivalent ways, perhaps belonging to several
classes and sharing all of their properties. That is, in general one should consider all
of the classes in which a constraint or function lies, as it has the properties of every
class it is in. If given data, or a prosodic description of a pattern, it may be easy to
discover counterexamples to some class-specific language-based characterization.
For instance, the strictly piecewise languages are closed under deletion (Rogers et al.,
2010), so if a language contained a word cvcv but not also a word cvc, then it
cannot be in this class. In general these language-theoretic characterizations provide
an easy way to say that a language cannot be in the class, but a guarantee of inclusion
may be more difficult to provide. A grammatical-formalism based analysis has the
opposite problem: providing a grammar is an easy way to guarantee inclusion, but it
may be difficult to prove that no such grammar is possible.

Schützenberger (1965) discusses the use of the syntactic monoid of a language to
determine if that language is star-free. This algebraic structure is derived from the
canonical acceptor for the language in question. Algebraic procedures for deciding
membership in the locally testable class (Brzozowski and Simon, 1973; McNaughton,

3

1974), the locally threshold testable class (Beauquier and Pin, 1989), and the
piecewise testable class (Simon, 1975) also exist. Indeed, several subregular classes
have algebraic decision procedures, including the class defined by the fragment of
first-order logic restricted to two variables and general precedence (Thérien and
Wilke, 1998) and possibly betweenness (Krebs et al., 2020). For those classes
testable in the strict sense, the algebraic approach finds an issue: an automaton and
its complement share a syntactic monoid, but these classes are not closed under
complementation. More information is necessary beyond the structure itself, as
shown by De Luca and Restivo (1980) for the strictly local class, or by Fu et al.
(2011) for the strictly piecewise class.

A pattern may be defined by zero or more constraints over the set of all possible
words. Rather than classifying a pattern in its entirety, it may be useful to factor it
into simple constraints and classify those (Lambert and Rogers, 2019). Leaving the
pattern in its factored state can result in a smaller state space and easier processing
(Heinz and Rogers, 2013). Rogers and Lambert (2019b) describe a mechanism for
extracting some types of subregular constraints from finite-state automata. Lambert
and Rogers (2020) show how factoring can be extended to tier-based classes, but
a persistent problem plagues tier-based analyses: other constraints easily interfere
with the tier selection process (Lambert, 2021).

As with classification, it may be desired to determine which constraints are
satisfied by some data without a neat, complete grammatical description of the
pattern. This is the learning problem. Gold (1967) proposed several learning
frameworks, and one in particular is important: learnability in the limit from positive
data. The restriction to only positive data both provides a more tightly restricted
learning paradigm and, as Yang (2015) discusses, may more accurately reflect the
acquisition process of natural language. Most if not all of the subregular classes are
learnable in the limit from positive data using some variant of Heinz’s (2010b) string
extension learning (Lambert et al., 2021; Lambert, 2021). One may go so far as to
suggest that without an effective learning procedure, a class is useless in description
of natural language phenomena. The robustness of the learning in the presence of
sparse data may also be of concern (Yang, 2013).

The discussion so far has dealt only with string languages definable by a state
machine of finitely many states. Syntax cannot be described this way. Syntax, like
many other hierarchical systems, often deals in trees. McCawley (1968) showed that
context free grammars, while producing superregular string yields, are only strictly
2-local over trees (see also Joshi and Levy, 1982). Graf (2018) shows that, in at least
some sense, the operations fundamental to Minimalist syntax are tier-based strictly
local on trees. The question becomes “how do we classify tree languages?” Klein
and Manning (2004) and Huang and Chiang (2005) consider state machines based
on a chart parse such as a cky table, where the number of states grows with the size

4

of the input. True finite-state machines also appear; Gécseg and Steinby (1984) and
Comon et al. (2007) both detail finite-state analyses wherein a recursive procedure
assigns a state to each subtree before deciding the state for the tree as a whole. It
seems that none have constructed graph-based analyses of problems with respect to
these tree automata, so this problem is explored here. On the topic of trees, algebraic
characterizations are indispensable in classifying string languages. But the syntactic
monoids of context free languages are infinite, and may not have such nice properties.
Clark (2015) discusses a different algebraic system over strings which classifies the
context-free languages, and a few algebraic systems have been proposed for dealing
with tree languages (Germain and Pallo, 2000; Steinby, 2015), but it remains unclear
how these connect to a subregular hierarchy for trees. Benedikt and Segoufin (2009)
have, however, explored this question in model-theoretic terms.

Finite state acceptors can also be extended by associating outputs with their edges
in order to describe transformations, sometimes referred to as transductions. If each
input symbol is required to be associated with some sequence of output symbols,
which are concatenated as computation progresses, then the rational relations
are described (Frougny and Sakarovitch, 1993, see also Rabin and Scott, 1959).
Deterministic functions in this class are called “subsequential”, and are frequently
used in phonology (Chandlee, 2014). Indeed Chandlee (2014) describes subclasses
of the subsequential functions, input strictly local and output strictly local, to account
for certain phonological properties. Tonal phonology and templatic morphology
are described by input strictly local functions over multiple tapes (Dolatian and
Rawski, 2020; Rawski and Dolatian, 2020), and both tier-based functions (Burness
and McMullin, 2019) and strictly piecewise functions (Burness and McMullin, 2020)
have also been proposed to account for various processes. Another common approach,
which uses semirings to unify acceptors, transducers, weighted automata, and more,
is described by Lothaire (2005) and by Roark and Sproat (2007). This semiring
approach essentially augments the state machine with an accumulator in some monoid.
I show that the power of such an accumulator is essentially unrestricted. While some
applications of the semiring approach do have merit, one must be careful not to
give into the unlimited power if seeking a restrictive formalism. The approach with
less freedom in structure yields a more restrictive set of relations. Courcelle (1994)
describes logical transductions, which abstract away from the machine. Classes of
string languages may be related both to a particular kind of algebraic property and to
some particular kind of logical formalism (Rogers and Lambert, 2019a), so the same
ought to hold for classes of functions. Unbounded deletion prevents input strictly
local functions from aligning with a kind of quantifier-free logic, but restrictions on
functions based on origin information (Bojańczyk, 2014; Bojańczyk et al., 2017)
may be useful in closing the gaps.

5

1.2 Outline of the Dissertation
Chapter 2 introduces the core concepts that will be used throughout this work,
including (sub)regular languages, finite-state automata, model theory, and factors.
Beyond that, this dissertation is structured such that the remaining chapters can be
read as independent works in their own right. Nonetheless, it is also designed to
promote a unifying perspective. The first part, from here through Chapter 5, focuses
on a thorough exploration of the piecewise-local subregular hierarchy. Classes based
on phonological tiers are characterized in a multitude of ways, and the algebraic
approach in particular is extended to investigate linguistically relevant functions
over strings. The second part, spanning the remaining chapters until the conclusion,
describes learning algorithms for tier-based classes, a graphlike structure for tree-
automata, an argument against one sort of transducer-acceptor unification, and finally
the software that was created to enable this work.

Language-theoretic characterizations of classes are useful because they are
machine-agnostic. I provide in Chapter 3 this type of characterization for some
classes which previously have received no such treatment, specifically the tier-based
classes and the (strongly) costrict classes. Another type of characterization, briefly
discussed in Chapter 3 and explored more thoroughly in Chapter 4, is based on
algebraic methods (c.f. Pin, 1997), and by these means both verifying and refuting
membership is simple. Strings can be partitioned into equivalence classes based
on how the pattern treats them, and the structure of these classes corresponds to
the complexity of the pattern. Algebraic properties prove exceptionally useful in
combining hierarchies: if one can show that all of the properties required by one class
are necessarily satisfied by another, then the second is a subclass of the first. This
provides a mechanism to unify the subregular hierarchies that have been proposed
over the years, and to prove whether multiple classes are equivalent to one another.
Indeed, by applying these methods to functions one can show that the class of input
strictly local functions (Chandlee, 2014), well-known in computational phonology,
corresponds precisely to the class of order-preserving definite functions (Vaysse,
1986), known in theoretical computer science. The two fields have independently
found value in the same type of simple function, and the equivalence opens the door
for each to learn from what the other has discovered. This result and other applications
of algebra to functions and relations is explored in Chapter 5, demonstrating a lower
upper bound on phonological processes than previously thought (Heinz, 2018;
Lamont, 2018).

The algebraic structure of a regular language or function can be derived from the
finite-state machine that represents it (Rabin and Scott, 1959). For languages, and
for certain types of functions, there is a canonical form from which we can be sure
we have found the simplest structure. For other types of functions, no such canonical
form is known, but an upper bound on complexity can still be found by examining

6

one or more given implementations.
While Chapter 3 includes brief discussion on extracting constraints from automata,

Chapter 6 incorporates discussion on constraint extraction from data (learning). This
problem is explored through a generalization of string extension learners, extending
the original definition to account for different possible interpretations of grammars,
and a learning algorithm for tier-based languages is defined.

There are many ways to represent string acceptors. One might use the potentially
infinite set describing the target language, some kind of grammar, or a state machine.
These state machines are represented by graphs, but properly superregular languages
require infinitely many states. Context free languages can, however, be recognized
with finitely many states using a tree acceptor rather than a string acceptor. Unfor-
tunately while the classification schemes discussed in Chapters 3–5 apply to string
languages and string-to-string transformations, tree languages have not received such
deep characterizations. However, the decision procedures for the classes on strings
are based, generally, on graph-algorithms. Tree acceptors and transformations more
naturally take on hypergraph representations. I propose such a representation in
Chapter 7, offering one step toward a more general classification scheme that handles
trees as easily as strings. The Boolean operations are described in much the same
way as the graph-based algorithms for strings. Some decision problems require less
structure, and these reductions are described.

Throughout these chapters it is discussed that algebraic structure is immensely
useful in complexity classification. Some have expressed interest in describing
certain phenomena using semiring-based transducers, which essentially are finite-
state acceptors that have been augmented with a monoidal accumulator. Chapter 8
discusses the expressive power of such a structure. First I show that a cky-style
chart parse can be expressed with a monoid. Then I generalize, demonstrating that a
run of a Turing machine can also be expressed as a monoid. In order to maintain
a truly finite amount of state, one may demand the use of a finite monoid, but this
prohibits representing even the identity function. A fundamental question remains:
what kinds of restrictions should a monoidal accumulator satisfy? My answer is that
the monoidal accumulator is the wrong approach in general, unless care is taken to
ensure that the accumulator does not hide too much power.

Finally, the software used throughout the creation of this work is documented, and
then the final chapter concludes the work by reiterating the goals of a structure-based
approach to linguistic analysis and stating directions for future work.

Individual chapters are meant to stand alone as much as possible without excessive
redundancy. Back-references exist where appropriate. The main story runs from
here through Chapter 5, while the chapters of the second part branch off as indicated
in Figure 1.1.

7

2

3

4

5

6

7

8

9

Figure 1.1: A suggested reading order.

8

PART

I

9

2: FORMAL LANGUAGES AND STRING ACCEPTORS

This chapter introduces formal languages and other concepts that will be used
throughout the text, including finite-state automata, finite model theory, and basic
abstract algebra. If a language can be associated with some fixed memory bound
under which any possible word can be tested for membership, then that language
is regular. The piecewise-local subregular hierarchy, which is shown in Figure 2.3
and which will be explored further in Chapter 3, is a collection of classes of regular
languages, where each class imposes its own additional constraints.

2.1 Notation
A function from a domain S to a codomain S′ is written 𝑓 : S → S′. The set
of natural numbers is written N. As a special case reflecting traditional notation
for sequences, the value of a function 𝑓 : N → S′ at 𝑛 is written 𝑓𝑛. A set
is denoted by objects between curly braces, {𝑥}. A multiset is essentially a set
in which each element is associated with an arbitrary count, rather than merely
zero or one, and uses a different sort of brace: P𝑥Q. A subscript on the multiset
braces indicates a maximum count beyond which adding more induces no change:
P𝑥, 𝑥, 𝑥, 𝑥Q3 = P𝑥, 𝑥, 𝑥Q3 represents a multiset containing three or more instances of
𝑥. Another sort of bracket indicates “the interpretation of 𝑥” in some sense: ⟦𝑥⟧.
What an interpretation means is dependent on context. The complement of a set 𝑆 is
∁𝑆. The powerset of 𝑆, the set of all of its subsets, is P(𝑆).

A few special classes are worth keeping in mind. The class of word-models will
be denoted by M. A class of grammars will be denoted by G. In general, notation
will be chosen to avoid assigning multiple meanings to the same glyph.

2.2 Formal Language Theory
A word is a sequence of symbols drawn from some alphabet, typically written Σ.
The set of all possible finite words is Σ∗, and the set of nonempty finite words is Σ+.
For reasons that will be discussed in section 2.5, these are sometimes referred to as
the free monoid and free semigroup, respectively, over Σ. A formal language is
nothing more than a possibly infinite set of words. Such a set may also be referred
to as a pattern or, when considering intersections of multiple patterns, a constraint.
Different classes of formal languages are defined based on what mechanisms are
needed in order to decide whether a word belongs to the language. A class is a
collection of languages, and a characterization of a class is a property such that all
and only those languages that have this property are in the class.

10

The locally testable (lt) and strictly local (sl) languages that were discussed
by McNaughton and Papert (1971) can be recognized by a fixed-width left-to-right
scanner (see also Beauquier and Pin, 1991). Several language classes admit more
than one characterization. For example, the locally threshold testable (ltt) class
of Beauquier and Pin (1989) can be described as all and only those language
recognizable by such a scanner where each possible factor has its attestation count
incremented (up to some threshold) each time it is encountered and the acceptability
of the word is determined by the collection of counts. Or it could be described as all
and only those languages first-order definable with successor (Thomas, 1982). Each
of these characterizations tells us something about the languages in the class.

2.3 Finite Model Theory
Concepts from finite model theory provide a uniform way to describe relational struc-
tures and their parts in logical terms (see Libkin, 2004 for a thorough introduction).
Applying these concepts to linguistic structure is not a new idea, with applications to
syntax by Rogers (1996, 1998) beginning to popularize the approach. During this
era, a great deal of research centered around this line of thought (c.f. Johnson, 1990;
King, 1989).

A relational word model consists of a domain, S, which is isomorphic to an
initial segment {1, . . . , 𝑛} of the nonzero natural numbers and represents positions
in the word, as well as a collection of relations, 𝑅𝑖 ⊆ S𝑎𝑖 , each of which has its own
arity 𝑎𝑖.

M(𝑤) = ⟨S; 𝑅𝑖⟩.
Henceforth, M will exclusively refer to word-models, and indeed notation will be
select to avoid overloading of symbols. Generally we assume that a model consists
of at least one ordering relation, as well as one or more unary labeling relations that
partition the domain. Additional relations of any arity are of course permitted. The
assumption of a partition is nonrestrictive; one can convert a model whose labeling
relations do not form a partition of the domain into a partitioned normal form by
using the powerset of these relations instead. One simple example of an ordering
relation is that of general precedence (<), where 𝑎 < 𝑏 if and only if (iff) the domain
element 𝑎 occurs anywhere before 𝑏.

The immediate successor relation that defines the local branch of the subregular
hierarchy can be derived in first-order logic from general precedence.

𝑥 ◁ 𝑦 ≜ (𝑥 < 𝑦) ∧ ¬(∃𝑧) [𝑥 < 𝑧 < 𝑦].

This is simply the transitive reduction of this general precedence relation. An example
word model is shown in Figure 2.1.

11

a b a b c a b a b c↦→

Figure 2.1: Precedence and successor models of “ababc”.

Now that we have a notion of a structure, we turn to discussion of contained
structures.1 Following Lambert and Rogers (2020), two concepts are distinguished:
a factor, which is a connected structure contained within a model, and a window,
which is a structured collection of domain elements from which a factor may be
derived. We begin by defining a window. In this way, one can build factors with
graph algorithms, simply traversing edges, but in cases where multiple paths yield
the same part of the structure, this part counts only as a single factor. This will
be useful later when introducing word boundaries, as well as when dealing with
structures having multiple relations.

A window is defined by a collection of indexed pairs of positions which combine
to describe a connected portion of a structure. Given a (homogeneous) relation 𝑅 of
arity 𝑎 ⩾ 2, i.e. 𝑅 : S𝑎, its 𝑎-windows are defined by the set

W𝑅
𝑎 ≜

{{
⟨ 𝑖𝑥𝑖,

𝑖+1
𝑥𝑖+1⟩: 1 ⩽ 𝑖 < 𝑎

}
: ⟨𝑥1, . . . , 𝑥𝑎⟩ ∈ 𝑅

}
.

This effectively turns each tuple in the relation into a sequence of overlapping pairs
that represent the edges of a (linear) directed graph version of that tuple. Each node
in this graph is labeled by not only the domain element itself, but also an index so
that cycles in the structure do not translate into cycles in the window. For instance,
if 1 is a domain element and ⟨1, 1⟩ appears in 𝑅, the only 2-window in the set of
2-windows that corresponds to this relation is{

⟨
1
1,

2
1⟩
}
.

Discussing smaller windows is simple. Any connected subgraph of an 𝑎-window
is also a window, of size equal to the number of nodes it contains.

For windows of size larger than the arity of the relation from which they are

1Because our notion of structural containment is distinct from the standard model-theoretic notion
of substructures, we are careful to avoid that term.

12

defined, we can use an inductive definition:

W𝑅
𝑘+1 ≜

{
𝐴 ∪ ⟨ 𝑗𝑎−1

𝑥𝑎−1,
𝑘+1
𝑥𝑎 ⟩: 𝐴 ∈ W𝑅

𝑘 and ⟨𝑥1, . . . , 𝑥𝑎⟩ ∈ 𝑅

and { 𝑗1, . . . , 𝑗𝑎−1} ⊆ {1, . . . , 𝑘}

and {⟨ 𝑗𝑖𝑥𝑖,
𝑗𝑖+1
𝑥𝑖+1⟩: 1 ⩽ 𝑖 < 𝑎 − 1} ⊆ 𝐴

and (∃𝑦, ℓ) [⟨ 𝑗𝑎−1
𝑥𝑎−1,

ℓ
𝑦⟩ ∈ 𝐴 or ⟨ ℓ𝑦, 𝑗𝑎−1

𝑥𝑎−1⟩ ∈ 𝐴]

and
(
∀ 𝑗𝑎 ∈ {1, . . . , 𝑘}

) [
⟨ 𝑗𝑎−1
𝑥𝑎−1,

𝑗𝑎
𝑥𝑎⟩ ∉ 𝐴

]}
.

The conditions on the first line select a 𝑘-window and an element of the relation.
The second line selects 𝑎 − 1 indices. The third line, which is never relevant for
a binary relation, ensures that these indices form a path from the first to the last,
and that this path is labeled by the appropriate domain elements. The fourth line
accounts for binary relations, simply asserting that the selected index corresponds to
an appropriate domain element. And finally the fifth ensures that edges in the model
may only be repeated in the case of cycles.

In short, for each 𝑘-window, we find a linear subgraph (a path) that maps to the
first 𝑎 − 1 elements of a tuple in 𝑅, then add an edge from the final node of this path
to a newly constructed node representing the final domain element from that tuple.

The conditions assert that adding this new node does not simply repeat the
construction of an already-existing path, while still allowing cycles to be iterated
without bound. For example, given the 2-window described previously, the only
valid 3-window formed from the same ⟨1, 1⟩ tuple is{

⟨
1
1,

2
1⟩, ⟨

2
1,

3
1⟩
}
.

Both index 1 and index 2 provide valid attachment points for a ⟨1, 1⟩ edge, but this
edge has already been followed from index 1, so that attachment is ruled out by the
condition on the fifth line. The result of this induction is that a window is a rooted,
connected, acyclic graph of indexed domain elements, where the root is the unique
node of in-degree zero.

Although only binary relations will be discussed in this work, this definition
applies more generally. Consider 𝑅3 = ⟨1, 2, 3⟩, ⟨1, 2, 4⟩, ⟨2, 4, 5⟩, ⟨3, 4, 5⟩. Two
pairs can be chained: ⟨2, 4, 5⟩ can overlay the right of ⟨1, 2, 4⟩, or ⟨1, 2, 4⟩ and
⟨1, 2, 3⟩ can be overlaid at their left portions. So the only 4-windows of 𝑅3 are{

⟨
1
1,

2
2⟩, ⟨

2
2,

3
4⟩, ⟨

3
4,

4
5⟩
}

and
{
⟨

1
1,

2
2⟩, ⟨

2
2,

3
4⟩, ⟨

2
2,

4
3⟩
}

and
{
⟨

1
1,

2
2⟩, ⟨

2
2,

3
3⟩, ⟨

2
2,

4
4⟩
}
.

13

a b a b c a b a b c

Figure 2.2: Two three-windows of “ababc” for the same factor.

It is possible that an alternative definition requiring less overlap might be preferred.
Notice though that the latter two windows are identical graphs when the indices are
ignored.

In general, there can be several windows that correspond to the same contained
structure. Looking only at the domain elements represented unifies these multiple
representations: the factor at a window 𝑥 in the word model 𝑚 (written 𝑚 ↾ 𝑥) is the
restriction of 𝑚 to the domain elements in 𝑥. For instance, consider the signature

M◁ = ⟨S; <, a, b, c⟩

and a word model over this signature

𝑚 =

〈{
1, 2, 3, 4, 5

}
;
{
⟨𝑥, 𝑦⟩: 𝑥, 𝑦 ∈ S and 𝑥 < 𝑦

}
,
{
1, 3

}
,
{
2, 4

}
,
{
5
}〉

,

If we have a window 𝑥 such that the domain elements included in 𝑥 are all and only 1,
2, and 4, such as either of those in Figure 2.2, then the factor at 𝑥 is the corresponding
restriction

𝑚 ↾ 𝑥 =

〈{
1, 2, 4

}
;
{
⟨1, 2⟩, ⟨1, 4⟩, ⟨2, 4⟩

}
,
{
1
}
,
{
2, 4

}
,∅

〉
.

The set of all 𝑘-factors of a model 𝑚 is the set

F𝑘 (𝑚) ≜
{
𝑚 ↾ 𝑥: 𝑥 ∈ W𝑘

}
.

where the windows are built over the ordering relations of 𝑚. We write F𝑅
𝑘
(𝑤) to

denote the factors of the natural word-model for a string 𝑤 with ordering relation 𝑅.
The word models shown to this point have been without explicit indication of

domain boundaries. Often, however, we wish to consider models in which these
boundaries are explicit, which we call anchored models. These can be formed by
augmenting a model with new positions, self-related under all ordering relations, that
are labeled “⋊” and “⋉” for head and tail boundaries, respectively. This self-relation

14

SL coSL

LT

LTT

SP coSP

PT

star-free

regular

TSL

Strict (factors)

Propositional (sets)

First-Order

Monadic Second-Order

◁ <

Figure 2.3: The piecewise-local subregular hierarchy.

allows words shorter than 𝑘 to be captured by 𝑘-windows without special treatment.
One might notice that a model that has a smaller number of domain elements

than the arity of its ordering relation might have no factors at all by these definitions.
While this is never a problem for anchored models, one might consider alternative
constructions when using nonanchored models. The simplest is to construct the
factors of the anchored models and then strip away the domain boundaries from the
result. In any case, the use of anchored word models will be assumed throughout
this text.

Several classes of subregular languages are defined by the model-theoretic means
discussed in this section (Rogers et al., 2012; Lambert et al., 2021). Factors built
around the < relation are piecewise factors, and those built around ◁ are local
factors. Whether one checks factors in isolation, sets of factors, or multisets of
factors determines how finely one may partition the space of languages, and these
dimensions form a piecewise-local subregular hierarchy, shown in Figure 2.3, based
on that shown by Rogers and Lambert (2019a). The ltt class is defined using
multisets of local factors, and tsl is placed off to the side indicating that it does
not readily fit in with the rest of the hierarchy. It is defined by applying a strictly
local (sl) grammar to a projection, and this projection step allows for more power.
The next chapter describes all of these classes, focusing on explaining tier-based
classes more generally and allowing us to more firmly locate tsl and newly created
extensions thereof.

2.4 Graphs and Finite-State Automata
A finite-state acceptor is a mechanism for deciding whether a structure belongs to a
given set by reading the structure in some reasonable order and traversing through a
finite set 𝑄 of states. Such an acceptor for strings over a finite alphabet Σ consists

15

𝑏

𝑎

𝑏
𝑎

Figure 2.4: A finite-state string acceptor: doubly-outlined states are accepting, and
the initial state is marked by the thick outline. All and only those strings which
contain an even number of occurrences of 𝑎 are accepted.

of its set of states, a transition function 𝛿 : Σ ×𝑄 → 𝑄, an initial state 𝑞0, and a set
𝐹 ⊆ 𝑄 of accepting states. This is typically written as the five-tuple ⟨Σ, 𝑄, 𝛿, 𝑞0, 𝐹⟩
(Rabin and Scott, 1959; Sakarovitch, 2009; Rogers et al., 2010). For instance, the
following represents the set of strings over the set {𝑎, 𝑏} that contain an even number
of occurrences of 𝑎:

A = ⟨{𝑎, 𝑏}, {𝑞1, 𝑞2}, 𝛿, 𝑞1, {𝑞1}⟩
𝛿(𝑎, 𝑞1) = 𝑞2

𝛿(𝑎, 𝑞2) = 𝑞1

𝛿(𝑏, 𝑞1) = 𝑞1

𝛿(𝑏, 𝑞2) = 𝑞2

There are constructive proofs that these string acceptors are expressively equivalent
to regular expressions and thus recognize all and only regular string languages
(McNaughton and Yamada, 1960). Strings are canonically read left-to-right, but
this class is closed under reversal so it follows that a right-to-left automaton would
be equally expressive. If 𝛿 is a function, such an acceptor is called a deterministic
finite-state automaton (dfa).

An automaton representing all and only those strings which contain an even
number of occurrences of 𝑎 is shown as a labeled directed graph in Figure 2.4. The
alphabet is {𝑎, 𝑏}. Each state of the acceptor is a node, and each element ⟨𝜎, 𝑞, 𝑟⟩ of
𝛿 is represented by an edge from 𝑞 to 𝑟 labeled 𝜎. The accepting states are marked
as such, and the initial state is denoted by an arrow from nowhere. A word 𝑤 is
accepted iff there is some path 𝑞𝑜 → · · · → 𝑞 𝑓 for some 𝑞 𝑓 ∈ 𝐹 whose labels spell
out 𝑤. For instance, “abba” is accepted by the dfa of Figure 2.4.

2.5 Transition Semigroups and Syntactic Monoids
At the very core, most mathematical structures consist of some set coupled with
one or more operations. We will concern ourselves here with only the simplest
of structures. A semigroup is a pair consisting of a set 𝑆 and an operation · that
satisfies certain special properties, ⟨𝑆, ·⟩. There are two properties that make this pair

16

a semigroup. First the set must be closed under the operation: given two elements 𝑥
and 𝑦 from 𝑆, it is necessarily the case that 𝑥 · 𝑦 ∈ 𝑆 as well. Further the operation
must be associative: for three elements 𝑥, 𝑦, and 𝑧 in 𝑆, it is necessarily the case that
(𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑦 · 𝑧). If the operation is understood from context, we often write 𝑥𝑦
instead of the full 𝑥 · 𝑦.

A monoid is a semigroup with another special property. If ⟨𝑆, ·⟩ is a semigroup
and there is some element 𝑒 ∈ 𝑆 such that for all elements 𝑥 ∈ 𝑆 it holds that
𝑒 · 𝑥 = 𝑥 · 𝑒 = 𝑥, then this semigroup is a monoid. The special element 𝑒 is called the
identity, and is often denoted by 1. For any semigroup 𝑆, one can create a monoid
𝑆1 by simply adjoining a new element defined to act as 1. If ⟨𝑆, ·⟩ is a semigroup
and 𝑇 is a subset of 𝑆 that remains closed under the semigroup operation, then ⟨𝑇, ·⟩
is a subsemigroup of 𝑆. If there is an identity for 𝑇 (even if there is not one for 𝑆),
then 𝑇 is a submonoid of 𝑆.

An object is free if the only equations it satisfies are the ones that follow from
the definition of that kind of object. That is, in a free semigroup one will find that
for all 𝑥, 𝑦, and 𝑧 it holds that 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧, but no other equations hold true. For
instance, for all 𝑥, 𝑥 ≠ 𝑥𝑥 ≠ 𝑥𝑥𝑥 ≠ · · · , and 𝑥𝑦 ≠ 𝑦𝑥 except when 𝑥 = 𝑦. Essentially
this lets us think of words in an algebraic way. For a given finite alphabet Σ, the free
semigroup over this alphabet is defined as follows:

• For each 𝑥 ∈ Σ, 𝑥 ∈ Σ+.

• If 𝑥 ∈ Σ and 𝑤 ∈ Σ+, then 𝑥𝑤 ∈ Σ+.

• Nothing else is in Σ+.

Formally the free semigroup is Σ+ under concatenation; if 𝑢 and 𝑣 are in Σ+, then
𝑢 · 𝑣 = 𝑢𝑣. The free monoid Σ∗ is Σ+ with an adjoined identity, the empty string.

The local subsemigroup of 𝑆 generated by an element 𝑎 ∈ 𝑆 is the set 𝑎𝑆𝑎 =

{𝑎𝑠𝑎: 𝑠 ∈ 𝑆}. If 𝑎 is an idempotent then 𝑎𝑎𝑎 = 𝑎 is in this local subsemigroup and
𝑎 · 𝑎𝑠𝑎 = 𝑎𝑠𝑎 = 𝑎𝑠𝑎 · 𝑎, so it is a monoid whose identity is its generator 𝑎.

Finally a direct product of two semigroups ⟨𝑆, ·⟩ and ⟨𝑇, +⟩ is a new semigroup
whose elements are pairs and the operation is defined as follows:

⟨𝑠, 𝑡⟩⟨𝑠′, 𝑡′⟩ = ⟨𝑠 · 𝑠′, 𝑡 + 𝑡′⟩.

2.5.1 Equivalence Relations
Recall that a formal language is a possibly infinite set of words, in other words, it
is some subset of Σ∗. One can in principle discuss this set as it stands, but often it
is simpler to think about a smaller structure, the structure induced by considering
the ways in which words behave when put together. After defining some notion of

17

𝑏

𝑎

𝑎

𝑏

𝑎, 𝑏

Figure 2.5: “Contains 𝑎𝑏” as a string acceptor.

behavior, one can construct an equivalence relation between words such that words
equivalent iff they have the same behavior under that definition.

For example, Nerode (1958) proposes using acceptable extensions to indicate
behavior: for some fixed language 𝐿, 𝑎 is equivalent to 𝑏 under this notion, 𝑎 N∼ 𝑏,
iff for all possible (suffixal) extensions 𝑣, it holds that 𝑎𝑣 ∈ 𝐿 iff 𝑏𝑣 ∈ 𝐿. The
Myhill-Nerode theorem states that a language is regular iff N∼ induces only finitely
many classes of equivalent words, and moreover the equivalence classes correspond
precisely to the states in the minimal complete deterministic finite-state automaton
representing the language, (Hopcroft and Ullman, 1979).

Consider the language over Σ = {𝑎, 𝑏} represented by Figure 2.5, containing
all and only those words which have an 𝑎𝑏 substring. There are precisely three
equivalence classes under N∼: words that have contained an 𝑎𝑏, ⟦𝑎𝑏⟧ corresponding
to the rightmost state, words that end on 𝑎, ⟦𝑎⟧ corresponding to the central state,
and everything else, ⟦𝜀⟧ corresponding to the leftmost state. Notice that 𝑎 and 𝑏𝑎

are both in ⟦𝑎⟧. However 𝑎 · 𝑎 and 𝑎 · 𝑏𝑎 lie in different classes: ⟦𝑎⟧ and ⟦𝑎𝑏⟧,
respectively. Unfortunately, the collection of resulting equivalence classes cannot
form a semigroup, as concatenation is not well-defined over the classes.

A different, two-sided notion of behavior was introduced by Myhill and reported
with attribution by Rabin and Scott (1959). Under this notion, given some fixed
language 𝐿, two words 𝑎 and 𝑏 are equivalent, 𝑎 M∼ 𝑏, iff for all strings 𝑢 and 𝑣 in
Σ∗, it holds that 𝑢𝑎𝑣 ∈ 𝐿 iff 𝑢𝑏𝑣 ∈ 𝐿. Prefixal as well as suffixal extensions are
considered. Under this notion, equivalence classes under N∼ may split into new ones
under M∼. For example, in the language of Figure 2.5 the words 𝑎 and 𝑏𝑎 behave
differently under prefixation by 𝑎, so rather than having a class consisting of all words
that end on 𝑎, we have a class of words that end with 𝑎 but begin with 𝑏 which is
separate from the class of words that end with 𝑎 and begin with anything other than
𝑏. Similarly, words beginning with 𝑏 and not containing 𝑎 are distinct from words
neither beginning with 𝑏 nor containing 𝑎, as again a prefixal 𝑎 will distinguish, say,
𝑏 from 𝜀.

Theorem 2.1. The M∼ relation is compatible with concatenation.

Proof. Let 𝑆 be a semigroup and 𝑇 some subset of that semigroup. Further let 𝑎, 𝑏,
𝑥, and 𝑦 be elements of 𝑆 such that for all elements 𝑢 and 𝑣 of 𝑆 it holds that 𝑢𝑎𝑣 ∈ 𝑇

18

iff 𝑢𝑏𝑣 ∈ 𝑇 and also it holds that 𝑢𝑥𝑣 ∈ 𝑇 iff 𝑢𝑦𝑣 ∈ 𝑇 . That is, 𝑎 M∼ 𝑏 and 𝑥
M∼ 𝑦.

Consider 𝑢 · 𝑎𝑥 · 𝑣. This is equal to 𝑢 · 𝑎 · 𝑥𝑣, which is in 𝑇 iff 𝑢 · 𝑏 · 𝑥𝑣 ∈ 𝑇 . By
reassociating, this is equivalent to 𝑢𝑏 · 𝑥 · 𝑣, which is in 𝑇 iff 𝑢𝑏 · 𝑦 · 𝑣 ∈ 𝑇 . That is,
𝑢𝑎𝑥𝑣 ∈ 𝑇 iff 𝑢𝑏𝑦𝑣 ∈ 𝑇 and 𝑎𝑥

M∼ 𝑏𝑦. ■

Essentially what this means is that the equivalence classes themselves form a
semigroup structure, and the equivalence class of 𝜀 acts as an identity so it is a
monoid. Not only is it a monoid, it is the smallest monoid capable of recognizing
the language 𝐿 over which the classes are defined (McNaughton and Papert, 1971).
Recognition in this sense means that there is a subset of Σ∗/M∼ such that the union of
contained classes is exactly 𝐿. Denote the monoid over M∼-equivalence classes of Σ∗
by Σ∗/M∼. This type of construction forms what is known as a quotient monoid, a
monoid formed by equivalence classes over some relation. If there were no identity,
it would be a quotient semigroup.

2.5.2 Monoid Construction
McNaughton and Papert (1971) demonstrate that the M∼ equivalence relation can be
constructed directly from a minimal dfa. For each string 𝑥 ∈ Σ∗, construct the
function 𝑓𝑥 : 𝑄 → 𝑄 mapping each state 𝑞 ∈ 𝑄 to the state 𝑟 that one reaches by
following edges to spell out 𝑥 from 𝑞. Start with the empty string corresponding to the
identity function, and extend words by one symbol at a time until no new functions
are generated. The result is Σ∗/M∼, often referred to as the syntactic monoid of 𝐿,
or as the transition monoid of the automaton from which it was formed. Because
this method associates strings to functions from state to state, there are at most 𝑄𝑄

equivalence classes under M∼ if 𝑄 is the number of classes under N∼, and Holzer and
König (2004) show that this upper bound is indeed reachable.

Applying this construction to the automaton depicted in Figure 2.5, one sees
that the empty string is the identity function. Numbering the states 1, 2, 3 from left
to right, one writes ⟨1, 2, 3⟩ to denote this function, each position maps to itself.
Then 𝑎 corresponds to ⟨2, 2, 3⟩, as upon reading an 𝑎, state 1 transitions to state 2,
state 2 remains in state 2, and state 3 remains in state 3. Similarly 𝑏 corresponds to
⟨1, 3, 3⟩. Each of 𝑎 and 𝑏 has created a new function, so they must be extended. We
see that 𝑎𝑎 corresponds to ⟨2, 2, 3⟩, equivalent to 𝑎 itself. Similarly 𝑏𝑏 is equivalent
to 𝑏 itself. But 𝑎𝑏 and 𝑏𝑎 are distinct, corresponding to ⟨3, 3, 3⟩ and ⟨2, 3, 3⟩,
respectively. Finally we see that 𝑎𝑏𝑎 = 𝑎𝑏𝑏 = 𝑎𝑏, 𝑏𝑎𝑎 = 𝑏𝑎, and 𝑏𝑎𝑏 = 𝑎𝑏, and no
new functions are created. The resulting monoid is shown in Figure 2.6 both as a
M∼-minimal acceptor (with equivalence classes in 𝐿 marked) and as a multiplication
table. The graph that underlies the acceptor is the Cayley graph of the monoid
(Zelinka, 1981).

19

1

𝑎

𝑏

𝑎𝑏

𝑏𝑎

𝑎

𝑏

𝑎

𝑏

𝑏

𝑎

𝑎, 𝑏

𝑎

𝑏

1 𝑎 𝑏 𝑏𝑎 𝑎𝑏

1 1 𝑎 𝑏 𝑏𝑎 𝑎𝑏

𝑎 𝑎 𝑎 𝑎𝑏 𝑎𝑏 𝑎𝑏

𝑏 𝑏 𝑏𝑎 𝑏 𝑏𝑎 𝑎𝑏

𝑏𝑎 𝑏𝑎 𝑏𝑎 𝑎𝑏 𝑎𝑏 𝑎𝑏

𝑎𝑏 𝑎𝑏 𝑎𝑏 𝑎𝑏 𝑎𝑏 𝑎𝑏

Figure 2.6: Syntactic monoid of "contains 𝑎𝑏".

2.6 Conclusions
This chapter introduced the basic concepts from formal language theory, finite model
theory, and abstract algebra which will appear throughout the remainder of this work.
Alongside this, a well-studied subregular hierarchy was presented. The hierarchy
presented in Figure 2.3 is motivated by language-theoretic means. Extending this
hierarchy is the focus of the following chapters, first demonstrating that tsl forms a
natural basis for an entirely new branch of the hierarchy, rather than sitting alone, and
then incorporating other well-studied classes of formal language into the picture.

20

3: CHARACTERIZING TIER-BASED SUBREGULAR CLASSES

The piecewise-local subregular hierarchy, henceforth referred to as simply the
subregular hierarchy, has been extensively studied for decades, with the local
branch studied by McNaughton and Papert (1971) and the piecewise branch stemming
from Simon (1975). Local constraints are, as the name implies, good at capturing
dependencies based on adjacent events, and can do so with even the simplest logics.
Even some long-distance dependencies can be captured, such as “s and ʃ do not
occur in the same word”, but there is no notion of directionality here. Piecewise
constraints fall on the other extreme, easily representing certain types of long-distance
dependencies, such as “an ʃ may not occur anywhere later than an s”, but requiring
at least first-order logic to be able to refer to adjacent events at all.

In order to more simply state some types of long-distance dependencies, and
to account for some that piecewise constraints cannot, a third branch came into
existence with the tier-based strictly local (tsl) class imposing adjacency on distant
parts of a string (Heinz et al., 2011). A tsl description works by relativizing the
concept of adjacency over some subset of the alphabet, referred to as the tier alphabet.
Symbols outside this subset are ignored entirely. As this sort of relativization can
simplify some descriptions, computer scientists may wish to keep this class, as well
its generalizations introduced herein, as options for pattern descriptions.

Linguistic interest in the tsl class stems from its usefulness in describing long-
distance dependencies, especially those that strictly piecewise constraints cannot
handle such as blocked harmony patterns (Heinz, 2010a; Heinz et al., 2011; McMullin,
2016). For example, the sibilant assimilation pattern of Slovenian (Jurgec, 2011) is
a sort of blocked harmony pattern, shown to be 2-tsl by McMullin (2016). This
pattern can be shown to be strictly star-free when restricted to the local or piecewise
branches of the subregular hierarchy. However, another important consideration
for linguistics is learnability, and the star-free class is not learnable in the limit
from positive data (Gold, 1967). On the other hand, 2-tsl has been shown to be
effectively learnable both by humans (McMullin, 2016) and by machines (Jardine
and Heinz, 2016) in such a setting, and 𝑘-tsl for arbitrary 𝑘 has been shown to be
learnable as well (Jardine and McMullin, 2017).

The main formal result of Heinz et al. (2011) was a language-theoretic proof that
tsl is a subclass of star-free. Originally tsl was defined by applying an erasing
homomorphism to a string(set), projecting it to strings formed from the tier alphabet,
then applying a strictly local filter to the result. This operational perspective is useful
in describing the solution, but it can mask some insights. To provide more clarity,

21

SL coSL

LT

LTT

SP coSP

PT

star-free

regular

TSL coTSL

TLT

TLTT

Strict (factors)

Propositional (sets)

First-Order

Monadic Second-Order

◁ ◁T <

Figure 3.1: The piecewise-local subregular hierarchy with tiers.

Lambert and Rogers (2020) provide an equivalent alternative definition based on
model theory and a new class of ordering relations, and from this they develop
language- and automata-theoretic characterizations of the class.

The present work extends this further, characterizing not only the tsl class
but also relativized variants (introduced here) of the other classes in the subregular
hierarchy. These characterizations also go further, including algebraic as well as
automata-, language-, and model-theoretic results. This chapter uses these character-
izations to extend the subregular hierarchy of Figure 2.3 to a richer scheme shown in
Figure 3.1 in which all local classes have an associated tier-based relativization.

We begin in section 3.1 with an overview of the model-theoretic concepts that will
be used, then section 3.2 provides definitions as well as model- and language-theoretic
characterizations for all of the relativized classes. Section 3.3 provides automata-
theoretic characterizations for some of the classes, deferring the rest to section 3.5
in which automata are converted to an algebraic structure. In this latter section,
algebraic characterizations are given for each new class, primarily synthesizing
classical results and applying them to the new structures. Algebraic characterizations
are explored even further in Chapter 4. Closure properties are proved in section 3.4,
using properties of automata to prove that some closures do hold, while using the
language-theoretic characterizations provided earlier to demonstrate that some other
potential properties do not.

3.1 Model Theoretic Descriptions
In this section we discuss a model-theoretic treatment of relativized adjacency. The
relation defined here is then used to define variants of each class of the subregular
hierarchy, where the relativized variant of the strictly local class is identical to the
tier-based strictly local class of Heinz et al. (2011).

22

a a
a b a b c b b c

a b a b c b b c
a a

<

◁

<{b,c}

◁{b,c}

reduce reduce

restrict

relativize

Figure 3.2: Word models for “ababc” using general precedence, immediate successor,
and relativized variants of each, showing the relationships among these relations.
Domain elements that are not ordered are pulled aside from the structure. In these
examples, the alphabet is Σ = {a, b, c}, and the salient symbols for the relativized
relations are T = {b, c}

Recall that the successor relation is the transitive reduction of the general
precedence relation. Instead of reduction, we might consider restricting the domain
to all and only those elements that satisfy a certain predicate 𝜑.

𝑥 <𝜑 𝑦 ≜ 𝜑(𝑥) ∧ 𝜑(𝑦) ∧ (𝑥 < 𝑦).

This is essentially the general precedence relation on the model’s projection to those
elements that satisfy 𝜑. We can of course combine these to obtain the reduction of
this restriction,

𝑥 ◁𝜑 𝑦 ≜ (𝑥 <𝜑 𝑦) ∧ ¬(∃𝑧) [𝑥 <𝜑 𝑧 <𝜑 𝑦],
which defines a relativized successor relation. Given some alphabet Σ and some
set of salient symbols T ⊆ Σ, the predicate 𝜑(𝑥) = T(𝑥) = ∨

𝜏∈T 𝜏(𝑥) results in a
relation that acts as if it were the successor relation on the model’s projection to T,
reminiscent of the original definition of the tslT class. We refer to this specific kind
of relativization as projective relativization. The particular definitions used here
guarantee that the factors of a model under a projectively relativized relation are
exactly those under the corresponding nonrelativized one of the model’s projection.

Figure 3.2 shows how the general precedence and immediate successor relations,
as well as their relativized variants, relate to one another. These relationships do not
only hold for these relations. In fact any binary relation whose transitive closure is

23

a a

⋊ b b c ⋉

⋊

⋊ b

⋊ b b

b b c

b c ⋉

c ⋉

⋉

Figure 3.3: All 3-factors of “⋊ababc⋉” under the ◁{b,c} relation. Factors that appear
shorter than this are formed from windows that repeat the boundary symbols.

antisymmetric may be relativized by taking the transitive reduction of a restriction
of its transitive closure. The antisymmetry requirement ensures uniqueness of the
result (Aho et al., 1972). Throughout this text we will consider only projective
relativization, though with appropriate choice of 𝜑 the more general treatment can
be shown to capture the structure-sensitive tier-based strictly local class of De Santo
and Graf (2019) or the domain- and interval-based strictly piecewise classes of
Graf (2017). One important property specific to projective relativization is that the
unordered elements truly have no effect on the ordered ones. Whether a domain
element is included in the restriction is decided entirely by the unary relation that
labels that point, and so the unordered elements can be freely removed, shuffled, or
inserted at any point.

For any projectively relativized relation, we assume for notational convenience
that the boundary symbols ⋊ and ⋉ are considered salient if they are present in the
model. So rather than writing ◁{⋊,b,c,⋉} we simply write ◁{b,c} instead. Figure 3.3
shows an anchored word model for “ababc” under the ◁{b,c} relation along with all
of its nonempty 3-factors. Because the domain boundaries are self-related, assuming

24

the domain elements of “⋊ababc⋉” are 1 through 7 in order, the windows{
⟨

1
1,

2
1⟩, ⟨

2
1,

3
3⟩
}

and
{
⟨

1
1,

2
1⟩, ⟨

1
1,

3
3⟩
}

both refer to the relativized prefix “⋊b” of this string. (Either instance of domain
element 1 is a valid attachment point for a ⟨1, 3⟩ edge.) The “a” elements are
unordered and do not occur in any factor.

3.2 Language-Theoretic Characterizations
A grammar is some representation of a mechanism by which the membership of a
string in a stringset may be decided. A class of grammars is denoted by G. The
characteristic function 𝟙 : G ×M→ B is as follows:

𝟙𝐺 (𝑚) ≜
{
⊤ if 𝑚 satisfies 𝐺,
⊥ otherwise.

Here, B represents the binary Boolean ring, ⊤ is true, ⊥ is false. Functions of more
than one argument are sometimes written with their first argument as a subscript; 𝟙𝐺
can be thought of as the partial application of the curried form of 𝟙. The stringset
represented by 𝐺 is the set of all and only those strings whose models satisfy it:

X(𝐺) ≜
{
𝑤: 𝟙𝐺

(
M(𝑤)

)}
.

Two grammars 𝐺1 and 𝐺2 are equivalent iff they are extensionally equal, that is,
X(𝐺1) = X(𝐺2).

3.2.1 Strict Locality
The original definition of the tsl class from Heinz et al. (2011) was operational. A
stringset 𝐿 is 𝑘-tslT iff there exists a 𝑘-sl grammar such that 𝐿 contains all and
only those strings whose projection to T satisfy this grammar.

A grammar for a 𝑘-sl stringset is simply a subset of F
𝑘
(Σ∗), that is, a set of

𝑘-factors, where an anchored model 𝑚 satisfies 𝐺 iff each of its 𝑘-factors occurs in
𝐺 (McNaughton and Papert, 1971):

𝟙𝐺 (M(𝑤)) = F
◁
𝑘
(𝑤) ⊆ 𝐺.

Because the symbols not in T never appear in any factors under <T or ◁T, any two
strings with the same projection to T will have the same set of factors under these
relations. Specifically, if 𝜋T(𝑚) represents the projection of𝑚 to T, it holds that𝑚 and
𝜋T(𝑚) have exactly the same set of factors under these relations. Moreover, if T = Σ

25

it follows by definition that these are equivalent to their nonrelativized analogues.
Therefore the only difference between a 𝑘-sl grammar and a corresponding 𝑘-tsl
one is interpretation:

𝟙𝐺 (M(𝑤)) = F
◁T

𝑘
(𝑤) ⊆ 𝐺.

We will see that this is indeed always the case, so from this point on characteristic
functions will be given without the relation specified. Using ◁ yields the local class,
◁T its relativization.

With this in mind, we turn to the language-theoretic characterization of the sl
class: closure under substitution of suffixes (Rogers and Pullum, 2011, see also
De Luca and Restivo, 1980). A stringset satisfies suffix substitution closure iff there
is some 𝑘 such that for any two strings 𝑤1 = 𝑢1𝑥𝑣1 and 𝑤2 = 𝑢2𝑥𝑣2 where |𝑥 | ⩾ 𝑘 −1,
if both 𝑤1 and 𝑤2 are in the set, then so is 𝑤3 = 𝑢1𝑥𝑣2. Lambert and Rogers (2020)
provide a similar characterization for the tsl class.

Definition 3.1 (Preprojective suffix substitution closure: pssc). A stringset 𝐿 over
the alphabet Σ is closed under T-preprojective suffix substitution (T-pssc) iff there
is some natural number 𝑘 such that for any two strings 𝑤1 = 𝑢1𝑥1𝑣1 and 𝑤2 = 𝑢2𝑥2𝑣2
where 𝜋T(𝑥1) = 𝜋T(𝑥2) and |𝜋T(𝑥1) | ⩾ 𝑘 − 1, if both 𝑤1 and 𝑤2 are in 𝐿, then so is
𝑤3 = 𝑢1𝑥1𝑣2.

Notice that Σ-pssc is equivalent to standard suffix substitution closure, as the
strings are necessarily equal to their projections. On its own though, T-pssc is not
sufficient to characterize tsl . The other necessary condition is that symbols not
in T be freely insertable and deletable, as previously discussed for the relativized
relations.

Theorem 3.1. A stringset 𝐿 over an alphabet Σ is tsl iff there is some subset T ⊆ Σ

such that symbols not in T are freely insertable and deletable and 𝐿 is closed under
T-pssc.

Proof. To prove that such a stringset is tsl , suppose there exists such a T. Then by
T-pssc, the projection of 𝐿 to T is sl. Further, by insertion and deletion closure of
non-T symbols we guarantee that 𝑤 is in 𝐿 iff its projection to T is. Together, these
facts show that 𝐿 is tsl .

To prove the reverse implication, suppose that 𝐿 is tsl . Then it is 𝑘-tslT for
some 𝑘 and T. By definition of tsl , 𝑤 is in 𝐿 iff its projection to T is, and so symbols
not in T are freely insertable and deletable. Because 𝐿 is tslT, its projection to T
is sl and thus satisfies suffix substitution closure. Further since 𝐿 is closed under
insertion of symbols not in T, it is then also closed under T-pssc. ■

In order to prove that a stringset is tsl , it suffices to provide a grammar. To
prove that a stringset cannot be tsl , one can find some set of symbols that are not

26

freely both insertable and deletable, then form strings from those symbols alone
that violate pssc. For instance, a constraint that forbids sequential (not necessarily
adjacent) occurrences of “a . . b . . a” is not tsl because neither “a” nor “b” is freely
insertable (so they are necessarily in T) and pssc is violated by the following words:

a

𝑘−1︷︸︸︷
b . . b b (∈)

b b . . b a (∈)
a b . . b a (∉).

3.2.2 Complements
If an sl stringset contains all strings that satisfy a grammar 𝐺, the complement of
this set is all strings that do not satisfy 𝐺. Since a model satisfies 𝐺 iff all of its
factors are in 𝐺, it follows that the model does not satisfy 𝐺 iff it has at least one
factor not in 𝐺. We can use the grammar of the complemented sl stringset as the
grammar for a cosl stringset. The result is a collection of factors, at least one of
which is required to appear in every word. The resulting characteristic function then
is as follows:

𝟙𝐺 (M(𝑤)) = 𝐺 ∩F𝑘 (𝑤) ≠ ∅.

Definition 3.2 (Ideal containment: ic). A stringset 𝐿 is 𝑘-cosl iff 𝐿 contains all
and only those strings 𝑤 that themselves contain at least one factor 𝑓 ∈ F

◁
𝑘
(𝑤) such

that every string 𝑥 that contains that factor is also in 𝐿:{
𝑥: 𝑓 ∈ F

◁
𝑘
(𝑥)

}
⊆ 𝐿.

If there exists some 𝑘 for which 𝐿 is 𝑘-cosl, then 𝐿 is cosl.

In ic, the factor 𝑓 is the (not necessarily unique) factor that caused dissatisfaction
of the corresponding sl grammar. Then in order to show that a stringset is not
𝑘-cosl, it suffices to find a (preferably small) word 𝑤 ∈ 𝐿 and a set of words 𝑆 such
that F

◁
𝑘
(𝑤) ⊆ F

◁
𝑘
(𝑆), yet no member of 𝑆 is in 𝐿. For instance we can show that

a constraint that bans occurrence of the substring “ab” is not cosl because ic is
violated by the following:

𝑤 = a . . a (∈)
𝑆 =

{
a . . a︸︷︷︸
𝑘−1

b a . . a︸︷︷︸
𝑘−1

}
(∉).

The factors of 𝑤 are {⋊a𝑖, a𝑖⋉: 0 ⩽ 𝑖 < 𝑘}. Each of these factors occurs in the single
word in 𝑆, and so the presence of any given factor is not sufficient to guarantee
acceptance. This extends trivially to preprojective ideal containment.

27

Definition 3.3 (Preprojective ideal containment: pic). A stringset 𝐿 is 𝑘-cotsl
iff there exists some T ⊆ Σ such that 𝐿 contains all and only those strings 𝑤 that
themselves contain at least one factor 𝑓 ∈ F

◁T

𝑘
(𝑤) such that every string 𝑥 that

contains that factor is also in 𝐿: {
𝑥: 𝑓 ∈ F

◁T

𝑘
(𝑥)

}
.

And 𝐿 is cotsl iff it is 𝑘-cotsl for some 𝑘 .

Since the factors of 𝑤 under ◁T are the same as those of its T-projection under ◁,
this is equivalent in every way to stating that 𝐿 is 𝑘-cotslT iff its T-projection is
𝑘-cosl and it is closed under insertion and deletion of symbols not in T. Further the
order of complementation and relativization is immaterial, as will become clear in
section 3.3.

3.2.3 Local Testability
In the sl stringsets, words may only contain permitted factors and therefore the
occurrence of a single forbidden factor suffices to reject a string. In contrast,
membership in a locally testable (lt) stringset is decided by the entire set of factors
in a word (McNaughton and Papert, 1971). This allows a mechanism to reject
“ab” even in the case of accepting “abab”, whose 2-factors are {⋊a, ab, b⋉} and
{⋊a, ab, ba, b⋉}, respectively. Due to their subset relationship, a mechanism capable
only of 2-sl distinctions could not do this, though each of the three other possible
combinations of acceptance and rejection of these two strings is possible under
2-sl. For testable stringsets, a grammar is a set of permitted sets of factors, and its
characteristic function is as follows:

𝟙𝐺 (𝑚) = F𝑘 (𝑚) ∈ 𝐺.

Rogers and Pullum (2011) state that a stringset is lt iff it is closed under local
test invariance, where given two strings 𝑤1 and 𝑤2 such that F

◁
𝑘
(𝑤1) = F

◁
𝑘
(𝑤2),

the first is in the set iff the second is as well. This extends trivially to preprojective
local test invariance.

Definition 3.4 (Preprojective local test invariance: plti). A stringset 𝐿 is tlt iff
there exists some T ⊆ Σ and some 𝑘 such that given two strings 𝑤1 and 𝑤2 such that
F
◁T

𝑘
(𝑤1) = F

◁T

𝑘
(𝑤2), the first is in 𝐿 iff the second is as well.

By the same reasoning employed in discussion of cotsl , this is equivalent in
every way to stating that 𝐿 is 𝑘-tltT iff its T-projection is 𝑘-lt and it is closed
under insertion and deletion of symbols not in T.

28

3.2.4 Threshold Testability
The lt class is characterized by sets of factors. But a set is merely a structure that
describes each possible element by a Boolean value, whether or not that element is
included. One might consider a natural extension of this structure which saturates
its count of occurrences not at 1 but at some arbitrary value 𝑡. This is exactly what
Beauquier and Pin did when defining the locally threshold testable (ltt) stringsets
in 1989 (see also Thomas, 1982, who defined the same class as “generalized locally
testable”). We denote this generalized structure by

F𝑘,𝑡 (𝑚) ≜ P𝑚 ↾ 𝑥: 𝑥 ∈ W𝑘 Q𝑡 .

Again F𝑅
𝑘,𝑡
(𝑤) represents the factors of the natural model for a string 𝑤 with ordering

relation 𝑅. For threshold testable stringsets, a grammar is a set of permitted multisets
whose characteristic function is as follows:

𝟙𝐺 (𝑚) = F𝑘,𝑡 (𝑚) ∈ 𝐺.

The characterization of ltt of course is local threshold test invariance, where
given two strings 𝑤1 and 𝑤2 such that F

◁
𝑘,𝑡
(𝑤1) = F

◁
𝑘,𝑡
(𝑤2), the first is in the set iff

the second is as well. This extends trivially to preprojective local threshold test
invariance.

Definition 3.5 (Preprojective local threshold test invariance: pltti). A stringset 𝐿
is tltt iff there exists some T ⊆ Σ and some 𝑘 and 𝑡 such that given two strings 𝑤1

and 𝑤2 such that F
◁T

𝑘,𝑡
(𝑤1) = F

◁T

𝑘,𝑡
(𝑤2), the first is in 𝐿 iff the second is as well.

By the same reasoning employed in discussion of cotsl and tlt , this is
equivalent in every way to stating that 𝐿 is ⟨𝑘, 𝑡⟩-tlttT iff its T-projection is
⟨𝑘, 𝑡⟩-ltt and it is closed under insertion and deletion of symbols not in T.

3.2.5 Piecewise Relativizations
Using general precedence instead of successor in the definition of the sl class yields
the strictly piecewise (sp) class. Characterized by Rogers et al. (2010) as those
stringsets closed under deletion (see also Haines, 1969 for an earlier treatment of
stringsets closed under deletion), we can show that a stringset is tsp iff it is sp. In
fact, unlike reduction, relativization provides neither more nor less expressive power
in precedence-based models.

By definition <Σ is equivalent to <, thus all nonrelativized stringsets are also
trivially relativized ones. More interesting is the reverse. Recall from Figure 3.2
that the relativization of the < relation is in fact merely a restriction, and so
F

<T

𝑘
(𝑚) ⊆ F

<

𝑘
(𝑚). If a factor occurs on the restriction, then it also occurs in the

29

nonrestricted model. Therefore a full piecewise model must be at least as powerful
as its relativization, but since T can be equal to Σ they are in fact equivalent.

For this same reason, when the factor width is fixed at 𝑘 = 1 all of the projectively
relativized classes are equivalent to their nonrelativized analogues.

3.3 Automata
In this section we discuss characterizations of the relativized classes and constructions
of their constituent stringsets in terms of deterministic finite-state automata (dfas).

Recall that a dfa is a directed graph that represents a machine that computes
the well-formedness of a string with respect to some regular stringset, and is
represented by a five-tuple ⟨Σ, 𝑄, 𝛿, 𝑞0, 𝐹⟩, Σ an alphabet, where 𝑄 is a set of states,
𝛿 : Σ × 𝑄 → 𝑄 a partial transition function which represents edges in the graph,
𝑞0 ∈ 𝑄 an initial state, and 𝐹 ⊆ 𝑄 a set of accepting states. A dfa is complete iff 𝛿

is total. A word 𝑤 is accepted by the dfa iff there is some path 𝑞0 → · · · → 𝑞𝑓 for
some 𝑞𝑓 ∈ 𝐹 (an accepting path from 𝑞0) whose labels spell out 𝑤.

Let ∼ represent the equivalence relation over states in 𝑄 under which 𝑞1 ∼ 𝑞2
iff for all 𝑢 ∈ Σ∗ there is an accepting path from 𝑞1 labeled 𝑢 whenever such a path
exists from 𝑞2 and vice-versa. This is Nerode equivalence. By the Myhill-Nerode
theorem (Nerode, 1958), one can construct a minimal dfa from a given one by
replacing each state in 𝑄 by its Nerode-equivalence class, the element of 𝑄/∼ that
contains it. A minimal dfa might have a unique nonaccepting sink, a state 𝑞 from
which there are no accepting paths for any string. A canonical dfa is one that is
minimal and has had its nonaccepting sink (if any) removed.

3.3.1 Characterizations
Every relativized class discussed in this text is closed under insertion and deletion of
symbols not in T. In other words, such symbols provide no information regarding
the well-formedness of a word. It follows then that from a given state 𝑞, the state
reached by following an edge labeled by such a symbol must be in the same Nerode-
equivalence class as 𝑞 itself. Thus in a canonical dfa, the nonsalient symbols are
exactly those that form self-loops on all states simultaneously.

∁T =
⋂
𝑞∈𝑄
{𝜎 ∈ Σ: 𝛿𝜎 (𝑞) = 𝑞}.

In other words, these are exactly the symbols 𝜎 such that the set of fixed points of
𝛿𝜎 is the entirety of 𝑄. Figure 3.4 shows a canonical dfa that represents a tsl
stringset in which 𝑑 is not a salient symbol. The fixed points under action by 𝑎, 𝑏, 𝑐,
and 𝑑 are {1}, {3}, {2}, and {1, 2, 3}, respectively.

Given a canonical automaton for a language 𝐿, the automaton for its T-projection

30

21 3

𝑐, 𝑑

𝑎

𝑏𝑐

𝑎, 𝑑

𝑐

𝑏, 𝑑

∁T =
⋂{
{𝑎, 𝑑}, {𝑐, 𝑑}, {𝑏, 𝑑}

}
= {𝑑}

Figure 3.4: A canonical dfa for which 𝑑 is a nonsalient symbol.

is formed by restricting 𝛿 to Σ − ∁𝑇 . As discussed previously, with this choice of T
a stringset is in the relativized variant of a given class iff its T-projection is in that
class. The T found this way is in fact the smallest set for which this holds, though
some stringsets might permit several possible values for T. For example, the stringset
Σ∗ is tsl𝑃 for every 𝑃 ⊆ Σ.

Once the projection has been found, any of the numerous existing methods for
determining class membership can be used. Most of these tests are based on the
algebraic interpretation of the syntactic semigroup corresponding to the automaton,
which will be discussed further in section 3.5. However, for the sl class we can
use a result of Edlefsen et al. (2008, see also Caron, 1998). Given a canonical dfa
𝐴 = ⟨𝛿, 𝑞0, 𝐹⟩, construct its powerset graph by defining 𝛿P : Σ ×P(𝑄) →P(𝑄):

𝛿P
𝜎 (𝑆) ≜ {𝛿𝜎 (𝑠): 𝑠 ∈ 𝑆}.

The stringset represented by 𝐴 is sl iff the graph formed by 𝛿P contains no cycles
that iterate a node whose label contains two or more elements. A powerset graph of
a non-sl stringset is shown in Figure 3.5 with the offending path marked.

Edlefsen et al. (2008) also provide a more efficient algorithm in terms of pairs of
states. However, the powerset graph construction also allows extraction of a grammar
for the target stringset from the automaton itself (Rogers and Lambert, 2019b). Since
a stringset is cosl iff its complement is sl, this serves as an automata-theoretic
method to decide membership in that class as well. Thus by projecting an automaton
to the appropriate tier alphabet, not only can we show that the target stringset is tsl
or cotsl , but we can also obtain a canonical grammar for this stringset if it is.

3.3.2 Constructions
The projection mechanism of section 3.3.1 is invertible. Given a dfa representing a
stringset 𝐿 whose alphabet is some T ⊆ Σ, the preprojection of 𝐿 to Σ is given by
adding self-edges on each symbol 𝜎 ∈ Σ − T to every state. If the subregular class
of 𝐿 is known, then the result lies in the corresponding relativized class.

However, the purpose of these projectively relativized classes is to represent

31

{1, 2, 3} {2}

{1}

{3}

∅

𝑎

𝑏

𝑐

𝑑

𝑎, 𝑑

𝑏
𝑐𝑎

𝑏

𝑐, 𝑑

𝑎

𝑏, 𝑑

𝑐

𝑎, 𝑏, 𝑐, 𝑑

Figure 3.5: The powerset graph that corresponds to the dfa of Figure 3.4, with the
cycle marked that proves this stringset is not sl. Notice that if 𝑑 is removed, there is
no such cycle.

32

0 1 2 3

y,⃝?

x

x,⃝?

y

y,⃝?

x

x,y,⃝?

Figure 3.6: Canonical aaa for the factor “xyx” under <.

those stringsets in which only certain symbols are salient. It would be meaningful
then to employ alphabet-agnostic automata (aaa). Such automata test for the
occurrence of a factor within a target string of unknown or unspecified alphabet by
augmenting the set of symbols relevant to the factor with a wildcard symbol ⃝? ,
much like Beesley and Karttunen (2003). For our purposes, we consider a wildcard
that matches all and only those symbols not already listed in the alphabet, like the
@ of Hulden (2009). The empty language is represented by a single state which
is non-accepting, bearing a self-loop labeled ⃝? , which is the only member of the
alphabet. The universal acceptor is identical, except its single state is accepting.

Factors under < (piecewise factors) are the simplest to construct. Given a factor
𝑓 = 𝜎1 . . . 𝜎𝑛 under this relation, the aaa is defined in essentially the same way that
Rogers et al. (2010) form a dfa:

𝑄 = {0, . . . , 𝑛}
Σ = {𝜎1, . . . , 𝜎𝑛,⃝? }
𝑞0 = 0
𝐹 = {𝑛}

𝛿(𝜎, 𝑞) =
{
𝑞 + 1 if 𝑞 < 𝑛 and 𝜎 = 𝜎𝑞+1,
𝑞 otherwise.

An example is shown in Figure 3.6. Note that since ⃝? is by definition never included
in the factor, edges on this symbol are always self-loops. In other words, this
construction provides a clear picture as to why sp (and extensions thereof) and tsp
(and extensions) should be identical.

For factors under ◁ (local factors), any of the common approaches to substring-
matching suffice, including that of Knuth et al. (1977). However, a naïve method
shown here demonstrates some properties of aaa. Fully-anchored factors of the
form 𝑓 = ⋊𝜎1 . . . 𝜎𝑛⋉ look like piecewise factors, except edges to a non-accepting

33

0 1 2 3x y x

⋊xyx⋉

0 1 2 3x y x

x,y,⃝?⋊xyx

Figure 3.7: Canonical automata for head-anchored factors.

0

x,y ,⃝?

• 0 1 2 3x y x

x,y,⃝?

= 0 1 2 3x

y,⃝?

⃝?

x

y x

y,⃝?

x,y,⃝?

Figure 3.8: Canonical aaa for the free factor “xyx” under ◁ constructed via
concatenation. The boxed x,y in the first operand are symbols that needed to be
added for compatibility.

sink ⊥ replace the self-loops:

𝑄 = {⊥, 0, . . . , 𝑛}

𝛿(𝜎, 𝑞) =
{
𝑞 + 1 if 𝑞 < 𝑛 and 𝜎 = 𝜎𝑞+1

⊥ otherwise.

For head-anchored but not tail-anchored factors, the difference is that 𝛿(𝜎, 𝑛) = 𝑛

rather than ⊥. Figure 3.7 shows a canonical (trimmed) aaa constructed for each of
“⋊xyx⋉” and “⋊xyx”.

These automata can then be concatenated after a universal acceptor to represent
tail-anchored and free factors, as in Figure 3.8, but this concatenation requires
an extra step compared to standard dfa operations: the two inputs to any binary
operation must be made compatible. Two aaa are compatible iff they have the
same alphabet. Since ⃝? represents any symbol not already in the alphabet, a symbol
𝜎 is added by placing new edges labeled by 𝜎 in parallel with any existing ⃝? edges.
Thus to make two aaa compatible, their alphabets should be extended in this way to
the union of their individual alphabets. Two compatible automata can be combined
using standard dfa operations, treating ⃝? as just another symbol.

To fix the alphabet of an aaa to a specific set Σ, simply extend it as necessary
and then remove any ⃝? edges. Relativizing an automaton over some tier alphabet T
is a process of fixing its alphabet to T, then adding ⃝? edges back in as self-loops on
every state. For example, Figure 3.9 shows how this process modifies the factor of
Figure 3.8 to consider only ‘x’, ‘y’, and ‘z’ salient.

34

0 1 2 3x

y,⃝?

⃝?

x

y x

y,⃝?

x,y,⃝?

↦→ 0 1 2 3x

y,z,⃝?

z

x,⃝?

y x

y,z

⃝? x,y,z,⃝?

Figure 3.9: Relativizing “xyx” to T = {x, y, z}: Add ‘z’ in parallel to any existing ⃝?
edges, remove those ⃝? edges, then add new ⃝? edges as self-loops everywhere.

3.4 Closure Properties
In this section we constructively prove some closure properties of relativized classes
via their automata-theoretic characterizations, and use the language-theoretic ones to
provide counter-examples to other closure properties.

3.4.1 Products
The intersections and unions of automata are both formed from the product
construction. Given two automata 𝐴 = ⟨𝛿, 𝑞0, 𝐹⟩ and 𝐴′ = ⟨𝛿′, 𝑞′0, 𝐹

′⟩, one
constructs the product

𝐴 ⊗op 𝐴′ ≜
〈
𝛿⊗, ⟨𝑞0, 𝑞

′
0⟩, 𝐹

op〉,
where the new transition function is defined pointwise:

𝛿⊗𝜎
(
⟨𝑞, 𝑞′⟩

)
≜
〈
𝛿𝜎 (𝑞), 𝛿′𝜎 (𝑞′)

〉
.

The set of accepting states is as follows:

𝐹op ≜
{
⟨𝑞, 𝑞′⟩: 𝑞 ∈ 𝐹 op 𝑞′ ∈ 𝐹′

}
,

where op is “and” for intersection or “or” for union. If 𝜎 labels a self-loop on every
state of both operands, then this product construction guarantees that the same will
hold in the result. By construction then, if ∁T is the set of nonsalient symbols for 𝐴
and ∁T′ for 𝐴′, then ∁T⊗ ⊆ ∁T ∩ ∁T′ is a set for this product.1 Notably, if 𝐴 and
𝐴′ represent stringsets in a relativized class where T = T′ and the underlying class is
closed under union (intersection), the result of the union (intersection) of 𝐴 and 𝐴′

remains in the same relativized class with the same set of salient symbols.

Theorem 3.2. The tltT and tlttT classes for fixed T are closed under both union
and intersection.

Proof. Because lt and ltt are each closed under both union and intersection, the

1Since the result is not necessarily canonical, a larger ∁T⊗ (thus a smaller T) may also exist.

35

product construction guarantees that tltT and tlttT for fixed T are as well. ■

For the same reasons, the same holds for tslT under intersection and cotslT

under union.
Note that these closures rely on equality of the sets of salient symbols. Consider

the tsl stringset whose projection to {a, b} contains no “ab” factor and the tsl
stringset whose projection to {a, c} contains no “aca” factor. In the intersection,
none of “a”, “b”, or “c” is freely insertable, so each must be salient no matter what Σ
is. Then even though the two strings

𝑘︷︸︸︷
c . . c b

𝑘︷︸︸︷
c . . c a

𝑘︷︸︸︷
c . . c (∈)

c . . c a c . . c b c . . c (∉)

have exactly the same 𝑘-factors and exactly the same counts for each, the first is in
the intersection while the second is not. This is a violation of pltti (see page 29).
Thus the intersection of these two stringsets is not even tltt , and so by containment
it cannot be tlt or tsl . For a more direct proof that this intersection is not tsl ,
consider the following violation of pssc:

ac
𝑘−1︷︸︸︷

c . . c ca (∈)
b c . . c b (∈)

ac c . . c b (∉).

In this example, the result of pssc is a string whose projection to {a, b} contains an
𝑎𝑏 factor, which should be forbidden.

3.4.2 Complements of Automata
To find the complement of a complete minimal dfa, simply invert the notion of
acceptance. That is, map ⟨𝛿, 𝑞0, 𝐹⟩ to ⟨𝛿, 𝑞0, 𝑄 − 𝐹⟩.

Theorem 3.3. A regular stringset 𝐿 and its complement can be defined by expressions
over the same tier of salient symbols as one another.

Proof. Because 𝐿 is regular, it can be represented as a complete minimal dfa, and
this dfa will be associated with some set of salient symbols. The complement
operation does not affect the transition function 𝛿, so the set of self-loops in the result
is exactly the same as that in the input. It follows then that the complement of 𝐿 has
the same set of salient symbols as 𝐿 itself. ■

36

Then if the underlying class is closed under complementation (as is the case for
lt and ltt) the corresponding relativized variant is so closed as well. Moreover,
since a relativization is formed by merely adding self-loops everywhere, the order
of relativization and complementation is immaterial. The two operations cannot
interfere with one another.

3.4.3 Some Non-Closures
Having shown that, for fixed T, tltT and tlttT are closed under all Boolean
operations and tslT and cotslT are closed under intersection and union, respectively,
we now show that tslT is not closed under union or complement, and that cotslT

is not closed under intersection or complement.
Consider two tsl {a,b} stringsets: one which bans the occurrence of “ab” on the

projection to {a, b}, and another which bans the occurrence of “ba” on this projection.
The union of these two stringsets allows the occurrence of either “ab” or “ba”, but
not both. Then the following is a violation of pssc:

ab

𝑘−1︷︸︸︷
b . . b (∈)
b . . b ba (∈)

ab b . . b ba (∉).

The complement of the first of these, that “ab” must occur on the projection to
{a, b}, is also not tsl . The following is a violation of pssc:

𝑘−1︷︸︸︷
a . . a ab (∈)

ab a . . a (∈)
a . . a (∉).

Now consider two cotsl{a,b} stringsets, one which requires that some “ab” occurs
on the projection to {a, b}, and another that requires that some “ba” occurs on this
projection. Their intersection (requiring both to occur) is not cotsl , as the following
violates pic:

𝑤 = a

𝑘−1︷︸︸︷
b . . b a (∈)

𝑆 =
{
a b . . b,

b . . b a
}

(each ∉),

since the collective factorset of 𝑆 is a superset of the factors of 𝑤. And of course,
the complement of the first of these stringsets, banning occurrences of “ab” on the

37

{a, b}-projection, is also not cotsl , because, as shown in section 3.2.2, the stringset
of the projection is not cosl.

From this we have shown that tlttT and tltT are closed under all Boolean
operations, while tslT and cotslT are closed only under intersection and union,
respectively. We have also shown that intersection and union closures hold only
when both stringsets have the same set of salient symbols.

3.5 Algebra
Here we begin to discuss an algebraic approach to characterization, which will be
expanded in Chapter 4. Many of the algorithms that decide whether a given dfa
represents a stringset from a particular class actually make use of the syntactic
semigroup associated with the dfa. Given a complete minimal dfa 𝐴 = ⟨𝛿, 𝑞0, 𝐹⟩,
recall that 𝛿 : Σ × 𝑄 → 𝑄 can be viewed as 𝛿 : Σ → (𝑄 → 𝑄) and define
𝛾 : Σ∗ → (𝑄 → 𝑄) as follows:

𝛾(𝑤) ≜
{
𝛾(𝑣) ◦ 𝛿(𝜎) if 𝑤 = 𝜎𝑣 for some 𝜎 ∈ Σ and 𝑣 ∈ Σ∗

id otherwise.

Here, ‘id’ refers to the identity function. The syntactic semigroup is then the
semigroup under flipped composition of the following functions:

𝑆(𝐴) ≜
{
𝛾(𝑤):𝑤 ∈ Σ+

}
.

Then if 𝑎 = 𝛾(𝑢) and 𝑏 = 𝛾(𝑣), we have 𝑎𝑏 = 𝑏 ◦ 𝑎 = 𝛾(𝑣) ◦ 𝛾(𝑢) = 𝛾(𝑢𝑣). Since
𝛾(𝑢)𝛾(𝑣) = 𝛾(𝑢𝑣), the semigroup operation is a homomorphism.

The star-free stringsets are those whose syntactic semigroup is finite and has no
nontrivial subgroups (Schützenberger, 1965).

Recall from section 3.3 that the set of nonsalient symbols, ∁T, is the set of
symbols that form self-loops on every state of a dfa. Translated to the algebraic
domain, these are all and only those symbols 𝜎 for which 𝛾(𝜎) = id. Sometimes we
denote id by 1. If 1 ∈ 𝑆, then we also say 𝑆 is a monoid.

Lemma 3.4. If 𝑆 is the syntactic semigroup of a star-free stringset and 𝑎, 𝑏 ∈ 𝑆 are
elements such that 𝑎𝑏 = 1, then 𝑎 = 𝑏 = 1.

Proof. Suppose 𝑎 and 𝑏 are elements of 𝑆 such that 𝑎𝑏 = 1, and that 𝑆 is the syntactic
semigroup of a star-free stringset. Then 1 = 𝑎𝑏 = (𝑎(𝑎𝑏))𝑏, and by continuing
this process we see that 𝑎𝑛𝑏𝑛 = 1 for all 𝑛. Schützenberger (1965) proves that
because 𝑆 is star-free, there exists some 𝑚 such that 𝑎𝑚 = 𝑎𝑚+1. Then we have
1 = 𝑎𝑚𝑏𝑚 = 𝑎𝑚+1𝑏𝑚 = 𝑎𝑎𝑚𝑏𝑚 = 𝑎1 = 𝑎, and by a similar argument we see that
𝑏 = 1 as well. Therefore 𝑎 = 𝑏 = 1. ■

38

This means that if 𝑆 corresponds to a star-free stringset, then every 𝑤 such that
𝛾(𝑤) = id is composed entirely of symbols from ∁T. We now define the projected
subsemigroup as

𝑋 (𝐴) ≜
{
𝛾(𝑤):𝑤 ∈ T+

}
.

Theorem 3.5. If 𝑆 corresponds to a star-free stringset, then the projected subsemi-
group 𝑋 of 𝑆 is equal to 𝑆 − {1}.

Proof. Suppose 𝑠 ∈ 𝑆. Then 𝑠 = 𝛾(𝑤) for some 𝑤 ∈ Σ∗, and by definition if 𝑤 is
the string 𝜎1 . . . 𝜎𝑛 then 𝑠 = 𝛾(𝜎𝑛) ◦ · · · ◦ 𝛾(𝜎1).

Suppose 𝑠 ≠ 1. Because whenever 𝜎 ∈ ∁T it holds that 𝛾(𝜎) = 1, it follows that
𝛾(𝑤) = 𝛾

(
𝜋T(𝑤)

)
. By definition, if |𝜋T(𝑤) | ≠ 0 then 𝑠 ∈ 𝑋 as well. If the length

of this projection were 0, then 𝑠 = 𝛾
(
𝜋T(𝑤)

)
would be 1, and since by assumption

𝑠 ≠ 1, this cannot be. Therefore, 𝑠 ∈ 𝑋 .
On the other hand, suppose 𝑠 = 1. Then by Lemma 3.4, we have {𝜎1, . . . , 𝜎𝑛} ⊆

∁T. Then 𝑤 = 𝜎1 . . . 𝜎𝑛 is not in T∗ and by definition is excluded from 𝑋 .
Thus if 𝑆 is star-free, 𝑋 contains all and only the nonidentity elements of 𝑆. ■

Because 𝑆 and 𝑋 are finite and generated by Σ or T, respectively, we can visualize
them as edge-labeled directed graphs just like a dfa. If 𝐴 is the dfa shown in
Figure 3.4 on page 31 augmented with a nonaccepting sink labeled 0, then 𝑆 is the
semigroup shown in Figure 3.10.

3.5.1 Strictly Local Stringsets and Their Complements
The sl and cosl classes (and their relativizations) cannot be characterized alge-
braically solely on the basis of their syntactic semigroups. Because the syntactic
semigroup is generated exclusively from the transition function 𝛿 of a dfa, an
automaton and its complement are associated with the same semigroup. This fact has
been noted previously by McNaughton (1974). However, if information describing
whether each state is accepting or rejecting (state parity) is retained then an algebraic
characterization is possible.

De Luca and Restivo (1980) provide a characterization based on Schützenberger’s
(1975) concept of a constant. Let 𝐴 be a subset of some semigroup 𝑆, and let 𝑐 ∈ 𝑆.
Then 𝑐 is a constant for 𝐴 if for all 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝑆 ∪ 1 it holds that whenever 𝑝𝑐𝑞 ∈ 𝐴

and 𝑟𝑐𝑠 ∈ 𝐴 it follows that 𝑝𝑐𝑠 ∈ 𝐴. If 𝑆 is freely generated from some finite
alphabet, De Luca and Restivo prove that 𝐴 is sl iff all sufficiently long words of 𝑆
are constants for 𝐴. This is equivalent to the suffix-substitution closure discussed in
section 3.2.1. Of course if all such words are instead constants for the complement
of 𝐴, then 𝐴 is cosl rather than sl.

In this case, 𝐴 is the stringset being tested, the language generated by the syntactic
semigroup under observation. If instead these properties hold for the projected

39

⟨1, 2, 3⟩

⟨2, 2, 2⟩⟨1, 1, 1⟩⟨1, 1, 0⟩ ⟨3, 3, 3⟩ ⟨0, 3, 3⟩

⟨2, 2, 0⟩ ⟨3, 3, 0⟩ ⟨0, 0, 0⟩ ⟨0, 1, 1⟩ ⟨0, 2, 2⟩

a,b,c,d a,d

b
c

a

b

c,d

a

b,d

c

a,d

bc

a,d

b

c

a bc

d

a

b

c,d

a

b

c,d

a

b,d

c

a

b,d
c

Figure 3.10: The syntactic semigroup corresponding to the dfa of Figure 3.4. Each
function is represented by the image of ⟨1, 2, 3⟩. (Each tuple additionally has a fourth
entry that is always labeled 0 and is omitted here for brevity.) The corresponding
projected subsemigroup lacks the identity as well as every edge labeled 𝑑.

40

subsemigroup, then the stringset is tsl or cotsl , respectively. But again, no
algorithm can distinguish a stringset and its complement given only an unadorned
syntactic semigroup.

3.5.2 Locally Testable Stringsets
The characterization for lt and therefore tlt is due to Brzozowski and Simon
(1973). First, note that an element 𝑥 of a semigroup 𝑆 is called idempotent iff 𝑥 = 𝑥𝑥.
An idempotent semigroup is a semigroup such that all of its elements are idempotent.
Given the syntactic semigroup 𝑆 of a stringset 𝐿, Brzozowski and Simon proved that
𝐿 is lt iff for all idempotent elements 𝑒 of 𝑆 it holds that the subsemigroup 𝑒𝑆𝑒 is a
commutative idempotent monoid. Note that the monoid requirement is immaterial,
as 𝑒𝑆𝑒 will always be a semigroup with identity. Namely, for any 𝑠 ∈ 𝑆, we see that
𝑒𝑒𝑒 · 𝑒𝑠𝑒 = (𝑒𝑒) (𝑒𝑒)𝑠𝑒 = 𝑒𝑒𝑠𝑒 = 𝑒𝑠𝑒 and similarly 𝑒𝑠𝑒 · 𝑒𝑒𝑒 = 𝑒𝑠𝑒, so 𝑒𝑒𝑒 (which
is itself simply 𝑒) is the identity.

Theorem 3.6. A stringset 𝐿 is tlt iff for all idempotent elements 𝑒 of 𝑋 , the projected
subsemigroup of its syntactic semigroup, it is the case that 𝑒𝑋𝑒 is a commutative
idempotent semigroup.

This holds because the projected subsemigroup is equivalent to the syntactic
semigroup of the projection, and a stringset is tlt iff its projection is lt by definition.

3.5.3 Locally Threshold Testable Stringsets
The characterization for ltt and therefore tltt is due to Beauquier and Pin
(1989). They define a variety (collection) of semigroups V to contain all and
only those aperiodic semigroups 𝑆 such that if 𝑒 and 𝑓 are idempotent, 𝑝 = 𝑒𝑠1 𝑓 ,
𝑞 = 𝑓 𝑠2𝑒, and 𝑟 = 𝑒𝑠3 𝑓 , it holds that 𝑝𝑞𝑟 = 𝑟𝑞𝑝. They then prove that a language
𝐿 is ltt iff its syntactic semigroup 𝑆 is a member of V. By expansion, this
means that for all idempotents 𝑒, 𝑓 of 𝑆 and for all 𝑠1, 𝑠2, 𝑠3 ∈ 𝑆, it holds that
𝑒𝑠1 𝑓 𝑠2𝑒𝑠3 𝑓 = 𝑒𝑠3 𝑓 𝑠2𝑒𝑠1 𝑓 .

The aperiodicity requirement is meaningful, as there do exist stringsets that satisfy
the latter requirement without even being star-free. Consider the set of strings of even
length over a unary alphabet, (𝑎𝑎)∗. Its syntactic semigroup consists of two elements,
1 and 𝑎, such that 𝑎𝑎 = 1. It necessarily holds that 𝑒𝑠1 𝑓 𝑠2𝑒𝑠3 𝑓 = 𝑒𝑠3 𝑓 𝑠2𝑒𝑠1 𝑓 under
any instantiation of these variables, because this is a commutative monoid.

Theorem 3.7. Let 𝐿 be a stringset and 𝑋 be the projected subsemigroup of its
syntactic semigroup. Then 𝐿 is tltt iff for all idempotent elements 𝑒, 𝑓 of 𝑋 , and
for all 𝑠1, 𝑠2, 𝑠3 in 𝑋 , it holds that 𝑒𝑠1 𝑓 𝑠2𝑒𝑠3 𝑓 = 𝑒𝑠3 𝑓 𝑠2𝑒𝑠1 𝑓 .

This holds because the projected subsemigroup is equivalent to the syntactic

41

semigroup of the projection, and a stringset is tltt iff its projection is ltt by
definition.

3.6 Conclusions
We introduced several new classes to the piecewise-local subregular hierarchy building
from the model-theoretic characterization of tsl by Lambert and Rogers (2020) and
noting that projective relativization does not affect the expressivity of classes based
on general precedence. We provided model-, language-, and automata-theoretic as
well as algebraic characterizations for each new class. This establishes a clearer
notion of relativized adjacency based on the salience of individual symbols, and
informs linguistic theory as it pertains to long-distance dependencies in phonology.
The newly established classes are integrated into the piecewise-local subregular
hierarchy in Figure 3.1.

The topic of learning is not covered in this chapter. But we would be remiss to
ignore that the unifying concept of relativized adjacency provides a straightforward
mechanism to extend known learning results for the tsl class to tlt and tltt
(see McMullin, 2016; Jardine and Heinz, 2016; Jardine and McMullin, 2017). This
applies even to the online tsl learning mechanism described in Chapter 6.

A Haskell library2 containing the automata-theoretic and algebraic decision
algorithms has been created. With this one can construct regular and subregular
stringsets from factors, or import OpenFST-format automata, and determine which,
if any, subregular classes the result occupies. The factor-based constructors make use
of the alphabet-agnostic automata described in section 3.3.2. Some of its features
will be discussed further in Chapter 9.

The class formed by intersecting multiple tsl constraints over different tier
alphabets, mtsl (De Santo and Graf, 2019), is not explored here. Under this
model-theoretic view, the relativized successor relation ◁T is parameterized by the
alphabet over which it is relativized, so different instantiations of this relation are as
different as the ◁ and < relations. With this in mind, future work in understanding
these interactions will shed light on the strictly piecewise-local class discussed in
Rogers and Lambert (2019a), and vice-versa. A multiple-tier-based language would
be defined by a logical sentence over a signature containing potentially several
relativized successor relations, one per relevant tier. Aksënova and Deshmukh
(2018) discuss attested interactions of multiple tiers; one might ask which kinds of
combinations (if any) allow intersection-closure to be maintained in the context of
the single-tier classes that have been the focus of this chapter. Counterexamples exist
for each type of interaction (disjoint, overlapping, and subset configurations), but
perhaps some smaller portion of the constraint space may combine more readily.

2Software available at https://hackage.haskell.org/package/language-toolkit

42

The multiple-tier-based classes are, of course, closed under intersection by virtue of
expressing each salient relation separately.

The characterizations provided here of the relativized variants of the subregular
classes rely heavily on the fact that ◁T and <T are the results of a projective
relativization. Another direction for future work then would be accounting for
arbitrary nonprojective relations, which would improve our understanding of De Santo
and Graf’s structure-sensitive tsl class and its (threshold) testable extensions, or
Graf’s (2017) domain- and interval-based strictly piecewise classes.

Finally, some of the subregular classes have been explored in application to trees
(c.f. Gécseg and Steinby, 1984), and some extended to transducers (Chandlee, 2014;
Ji and Heinz, 2020). It would be interesting to see how relativization applies to these
cases as well.

43

4: MONOID VARIETIES AND A SUBREGULAR SPIRAL

This chapter uses algebraic fundamentals to construct a subregular hierarchy that
subsumes the complement-closed classes of the piecewise-local subregular hierarchy
discussed in previous chapters and incorporates in a unified manner several other
classes of formal languages known from the field of theoretical computer science.
These latter classes are characterized based on definability in various fragments of
various types of formal logic. For instance, The Büchi-Elgot-Trakhtenbrot theorem
states that regular languages correspond precisely to those definable in monadic
second-order logic with successor or general precedence (Büchi, 1960; Elgot, 1961;
Трахтенброт, 1962). Further, connections between first-order logic and star-free
languages have long been established (McNaughton and Papert, 1971), so any
fragment of these will necessarily produce some subclass of the full class. This
chapter incorporates discussion of the fragments of quantifier-free first-order logic
described by Rogers and Lambert (2019a) as well as, among others, the two-variable
restrictions discussed by Thérien and Wilke (1998) and Krebs et al. (2020) to
construct a full unified hierarchy.

We begin by discussing Green’s relations (Green, 1951) and forming a basic
classification hierarchy from first principles founded upon those relations. From
there, more classes are constructed by either adding restrictions to find subclasses
or removing restrictions to find superclasses. Once the basic hierarchy is in
place, we discuss a general type of constraint relaxation that duplicate the entire
hierarchy, and then duplicate it once more by introducing relativized adjacency.
The resulting hierarchy subsumes the well-known subregular classes and provides a
simple mechanism for extension. Following the principles described in this chapter,
one can easily construct new classes and understand immediately where in the
hierarchy they will fall. This provides a more natural hierarchy with which one can
better understand sequential patterns in language. The nexet chapter characterizes
some morphophonological processes by the hierarchy built in this chapter, while
Appendix A does the same for some phonotactic constraints.

4.1 Green’s Relations and a Basic Hierarchy
In abstract algebra, James A. Green is known for his relations that characterize the
structure of a semigroup. He first defines 𝑎 R 𝑏 iff 𝑎𝑆1 = 𝑏𝑆1, 𝑎 L 𝑏 iff 𝑆1𝑎 = 𝑆1𝑏,
and 𝑎 J 𝑏 iff 𝑆1𝑎𝑆1 = 𝑆1𝑏𝑆1 (Green, 1951). Two others are defined from these:
𝑎 H 𝑏 iff both 𝑎 L 𝑏 and 𝑎 R 𝑏, and 𝑎 D 𝑏 iff there exists some 𝑐 such that 𝑎 L 𝑐

and 𝑐 R 𝑏. Each of these is an equivalence relation: reflexive (𝑎 ∼ 𝑎), symmetric

44

(𝑎 ∼ 𝑏 ↔ 𝑏 ∼ 𝑎), and transitive (if 𝑎 ∼ 𝑏 and 𝑏 ∼ 𝑐 then 𝑎 ∼ 𝑐). A monoid is trivial
under an equivalence relation ∼ iff 𝑎 ∼ 𝑏 implies that 𝑎 = 𝑏. It is immediately
apparent from their definitions that if 𝑎 R 𝑏 or if 𝑎 L 𝑏 then 𝑎J 𝑏. One perhaps
less obvious implication is as follows.

Lemma 4.1. If 𝑎 D 𝑏 then 𝑎J 𝑏.

Proof. Suppose 𝑎 D 𝑏. Then there exists some element 𝑐 such that 𝑎 L 𝑐 and
𝑐 R 𝑏. Then 𝑐 ∈ 𝑆1𝑎 and there exists an 𝑠 such that 𝑐 = 𝑠𝑎. And also 𝑏 ∈ 𝑐𝑆1 and
there exists a 𝑡 such that 𝑏 = 𝑐𝑡 = 𝑠𝑎𝑡. Then 𝑏 ∈ 𝑆1𝑎𝑆1. By a similar argument,
𝑎 ∈ 𝑆1𝑏𝑆1, and therefore 𝑎J 𝑏. ■

And less obvious still is Green’s own Theorem 3:

Theorem 4.2 (Green, 1951). If every element 𝑎 ∈ 𝑆 has finite order, i.e. if {𝑎𝑛 : 𝑛 ∈ N}
is finite for all 𝑎, thenJ = D.

Specifically this means that for any finite semigroup,J and D coincide. Because
this work is focused solely on the syntactic semigroups of regular languages, which are
necessarily finite (Rabin and Scott, 1959), these relations will be used interchangeably,
choosing whichever is more convenient in a given proof.

There are some aspects of the multiplication table for a semigroup that can be
gleaned from the equivalence of elements under Green’s relations. One useful result
is as follows:

Lemma 4.3 (Miller and Clifford, 1956). For any idempotent 𝑒 and any element 𝑎 of
𝑆, if 𝑒 R 𝑎 then 𝑒𝑎 = 𝑎 and if 𝑒 L 𝑎 then 𝑎𝑒 = 𝑎.

Proof. Suppose 𝑎, 𝑒 ∈ 𝑆 such that 𝑒𝑒 = 𝑒. If 𝑎 R 𝑒, then 𝑎 ∈ 𝑒𝑆1. In other words,
there is some 𝑠 such that 𝑎 = 𝑒𝑠. By expansion, 𝑒𝑎 = 𝑒𝑒𝑠 = 𝑒𝑠 = 𝑎. And by a similar
argument, 𝑎𝑒 = 𝑎 if 𝑎 L 𝑒. ■

Another property concerns subgroups. Consider the subsemigroup generated by
an element 𝑎. That is, the elements 𝑎, 𝑎2 = 𝑎𝑎, 𝑎3 = 𝑎𝑎𝑎, etc. In a finite semigroup,
there are of course only finitely many such elements. In other words, there exist some
positive natural numbers 𝑚 and 𝑛 such that 𝑎𝑚 = 𝑎𝑚+𝑛. Then 𝑎𝑚𝑛 is idempotent1
and the powers of 𝑎 along the cycle back to this element form a group (a monoid in
which every element 𝑥 has an inverse 𝑥−1 where 𝑥𝑥−1 = 𝑥−1𝑥 = 1). For instance in
Figure 4.1, 𝑚 = 4, 𝑛 = 6, and 𝑎24 (the highlighted element) is indeed idempotent.
Denote this element 𝑎𝜔.

Lemma 4.4. If 𝑥 and 𝑦 are elements of a group, then 𝑥 H 𝑦.
1This holds for every multiple of 𝑛 that is greater than 𝑚.

45

𝑎

· 𝑎

Figure 4.1: Every element 𝑎 of a finite semigroup 𝑆 eventually generates a group.

1

J

L R

H

Figure 4.2: A basic five-class hierarchy below star-free.

Proof. Let 𝑥 and 𝑦 be elements of a group. Then 𝑥 = 𝑦 · 𝑦−1𝑥 and 𝑦 = 𝑥 · 𝑥−1𝑦, and
it follows that 𝑥 R 𝑦. By a similar argument, 𝑥 L 𝑦. By definition then, 𝑥 H 𝑦. ■

A semigroup has only trivial subgroups iff it is H-trivial. These groups are
precisely the H-classes. An H-trivial semigroup is aperiodic. We can construct a
five-class hierarchy of finite monoids from Green’s relations and the universal relation
under which all elements are related. Denote the class of monoids trivial under the
latter by 1, and those trivial under one of Green’s relations by that relation’s letter in
boldface. The resulting hierarchy is shown in Figure 4.2. Note that Schützenberger
(1965) shows that a language is star-free iff it is aperiodic, so this hierarchy is centered
below star-free.

A special relationship exists between elements related to products that include
them.

Lemma 4.5. In a finite semigroup, if 𝑠J 𝑠𝑥 then 𝑠 R 𝑠𝑥 and if 𝑠J 𝑥𝑠 then 𝑠 L 𝑥𝑠.

Proof. Let 𝑠 and 𝑠𝑥 beJ-related elements of a semigroup 𝑆. Then clearly 𝑠 · 𝑥 = 𝑠𝑥

and 𝑠𝑥 ∈ 𝑠𝑆1. Because 𝑠 J 𝑠𝑥, there exist 𝑢 and 𝑣 such that 𝑠 = 𝑢𝑠𝑥𝑣. Then
𝑠 = 𝑢 · 𝑢𝑠𝑥𝑣 · 𝑥𝑣 = · · · = 𝑢𝜔𝑠(𝑥𝑣)𝜔. By idempotence then, 𝑠 = 𝑢𝜔𝑢𝜔𝑠(𝑥𝑣)𝜔 = 𝑢𝜔𝑠.

46

1 𝑎 𝑏 𝑐 𝑎𝑏 𝑏𝑐 𝑐𝑏

1 1 𝑎 𝑏 𝑐 𝑎𝑏 𝑏𝑐 𝑐𝑏

𝑎 𝑎 𝑎 𝑎𝑏 𝑎 𝑎𝑏 𝑏𝑐 𝑎𝑏

𝑏 𝑏 𝑎 𝑏 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑏𝑐

𝑐 𝑐 𝑎 𝑐𝑏 𝑐 𝑎𝑏 𝑏𝑐 𝑐𝑏

𝑎𝑏 𝑎𝑏 𝑎 𝑎𝑏 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑏𝑐

𝑏𝑐 𝑏𝑐 𝑎 𝑏𝑐 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑏𝑐

𝑐𝑏 𝑐𝑏 𝑎 𝑐𝑏 𝑏𝑐 𝑎𝑏 𝑏𝑐 𝑏𝑐 𝑎∗ 𝑎𝑏∗ 𝑏𝑐∗

𝑐𝑏

𝑐∗ 𝑏∗

1∗

Figure 4.3: The syntactic monoid corresponding to the language in which all words
contain an 𝑎 not followed by 𝑏 . . . 𝑐. The symbol 𝑑 is in [1].

But now 𝑠𝑥 · 𝑣(𝑥𝑣)𝜔−1 = 𝑢𝜔𝑠𝑥 · 𝑣(𝑥𝑣)𝜔−1 = 𝑢𝜔𝑠(𝑥𝑣)𝜔 = 𝑠. It follows that 𝑠 R 𝑠𝑥.
A similar argument shows that if 𝑠J 𝑥𝑠 then 𝑠 L 𝑥𝑠. ■

Corollary 4.5.1. If 𝑎J 𝑎2 then 𝑎 H 𝑎2.

Given the Cayley table of a finite semigroup, one can easily construct the
equivalence classes under Green’s relations. If the rows associated with two elements
𝑎 and 𝑏 contain the same set of elements (including the element itself), then 𝑎 R 𝑏.
Similarly if their columns contain the same set of elements, then 𝑎 L 𝑏. Recall that
H and D are derived directly from these, and that for a finite semigroupJ = D. One
can construct a so-called “egg-box” diagram for a finite semigroup by placing each
D-class into a block, subdivided into a grid whose rows are R-classes and whose
columns are L-classes. These blocks are then arranged into a Hasse diagram by
their ⩽J preorder: if 𝑆1𝑎𝑆1 ⊊ 𝑆1𝑏𝑆1 then the block containing 𝑎 is considered to be
less than 𝑏. It is impossible to climb to a higherJ-class — multiplying on the left
or right will leave the class unchanged or strictly smaller. Intuitively, falling in the
⩽J order results from discovery of a salient factor (Colcombet, 2011). Idempotent
elements, those 𝑥 where 𝑥𝑥 = 𝑥, are denoted by a star in the diagram.

Consider the monoid shown in Figure 4.3, the syntactic monoid of the language
in which all words contain an 𝑎 that is not followed by a 𝑏 . . . 𝑐 subsequence over
the alphabet Σ = {𝑎, 𝑏, 𝑐, 𝑑}. At left is its Cayley table; one notes that the 𝑎 row
contains the following set of elements: {𝑎, 𝑎𝑏, 𝑏𝑐}, exactly the same set as the 𝑎𝑏

and 𝑏𝑐 rows. That is, these elements are in the same R-class (and thus the same
D-class). The remaining four elements have distinct rows: 1 has the entire monoid, 𝑏
has {𝑎, 𝑏, 𝑎𝑏, 𝑏𝑐}, 𝑐 has {𝑎, 𝑐, 𝑎𝑏, 𝑏𝑐, 𝑐𝑏}, and 𝑐𝑏 has {𝑎, 𝑎𝑏, 𝑏𝑐, 𝑐𝑏}. Each column
is distinct, so no two elements share an L-class. We see that 𝑐𝑏 is the only element
that is not idempotent; it squares to 𝑏𝑐 and thus does not get a star. The two-sided
ideal of 1 is the entire monoid, firmly situated at the top of our partial order by subset.

47

1 𝑎 𝑏 𝑐 𝑎𝑏

1 1 𝑎 𝑏 𝑐 𝑎𝑏

𝑎 𝑎 𝑎 𝑎𝑏 𝑐 𝑎𝑏

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏

𝑐 𝑐 𝑐 𝑐 𝑐 𝑐

𝑎𝑏 𝑎𝑏 𝑎𝑏 𝑎𝑏 𝑎𝑏 𝑎𝑏

𝑐∗

𝑏∗

𝑎𝑏∗

𝑎∗

1∗

Figure 4.4: The syntactic monoid corresponding to the language in which all words
begin with 𝑎 and whose first consonant is 𝑏. The symbol 𝑑 is in [𝑐].

That of 𝑐 is {𝑎, 𝑐, 𝑎𝑏, 𝑏𝑐, 𝑐𝑏}, of 𝑏 is {𝑎, 𝑏, 𝑎𝑏, 𝑏𝑐, 𝑐𝑏}, of 𝑐𝑏 is {𝑎, 𝑎𝑏, 𝑏𝑐, 𝑐𝑏}, and
finally that of 𝑎 is {𝑎, 𝑎𝑏, 𝑏𝑐}.

This diagram immediately tells us about the complexity of the language it
represents. There are distinct elements that share a block, a J-class, so the
represented language is notJ-trivial. Specifically they share a row, an R-class, so it
is also not R-trivial. However, no two elements share a column within a block, so
the language is L-trivial (and thus H-trivial).

Consider now the language over Σ = {𝑎, 𝑏, 𝑐, 𝑑} shown in Figure 4.4 where every
word begins with 𝑎, and the first consonant, if any, is 𝑏. This language is R- and
H-trivial, as no elements share a row, but it is not not L- or J-trivial, as some
elements do share a column.

In both of the examples discussed so far, one might notice that for every D-class
containing an idempotent, each of the other elements in the class is itself idempotent.
This is not a coincidence. First, some terminology. An element 𝑎 of a semigroup
𝑆 is regular iff there exists some element 𝑥 such that 𝑎𝑥𝑎 = 𝑎. A theorem of
von Neumann (1936) reprinted by Green (1951) and Miller and Clifford (1956) is
that the following are equivalent:

1. 𝑎 is regular,

2. 𝑎 L 𝑒 for some idempotent 𝑒, and

3. 𝑎 R 𝑒 for some idempotent 𝑒.

Proof. (1 ⇒ 2) If 𝑎 is regular then there exists some 𝑥 such that 𝑎𝑥𝑎 = 𝑎. Then
𝑥𝑎𝑥𝑎 = 𝑥𝑎. We have 𝑥 · 𝑎 = 𝑥𝑎 and 𝑎 · 𝑥𝑎 = 𝑎, so 𝑎 L 𝑥𝑎.

(2 ⇒ 1) Let 𝑎 L 𝑒 for some idempotent 𝑒. Then 𝑥𝑎 = 𝑒 for some 𝑥 and by
lemma 4.3 it holds that 𝑎𝑒 = 𝑎. Then 𝑎 = 𝑎𝑒 = 𝑎𝑥𝑎 and thus 𝑎 is regular.

(1⇔ 3) A similar argument suffices. ■

48

1 𝑎 𝑏 𝑐 𝑏𝑎 𝑎𝑏

1 1 𝑎 𝑏 𝑐 𝑏𝑎 𝑎𝑏

𝑎 𝑎 𝑎 𝑎𝑏 𝑐 𝑎𝑏 𝑎𝑏

𝑏 𝑏 𝑏𝑎 𝑏 𝑏 𝑏𝑎 𝑎𝑏

𝑐 𝑐 𝑎 𝑐 𝑐 𝑎 𝑎𝑏

𝑏𝑎 𝑏𝑎 𝑏𝑎 𝑎𝑏 𝑏 𝑎𝑏 𝑎𝑏

𝑎𝑏 𝑎𝑏 𝑎𝑏 𝑎𝑏 𝑎𝑏 𝑎𝑏 𝑎𝑏

1∗

𝑐∗ 𝑎∗

𝑏∗ 𝑏𝑎

𝑎𝑏∗

Figure 4.5: Egg-box for “contains 𝑎𝑏”.

An immediate implication of this is that within a given D-class, if there is any
idempotent at all then there is at least one in each row and column of that block in
the egg-box diagram. Such a D-class is itself called regular, and a class lacking an
idempotent is irregular. It is not the case in general that every regular element is
idempotent, as evidenced by the language depicted in Figure 4.5 over Σ = {𝑎, 𝑏, 𝑐} in
which all words contain an 𝑎𝑏 substring. Notice that 𝑏𝑎 is regular but not idempotent.

Lemma 4.6. 𝑆 is an L-trivial semigroup iff then 𝑏(𝑎𝑏)𝜔 = (𝑎𝑏)𝜔 for any two
elements 𝑎 and 𝑏.

Proof. (⇒) Let 𝑆 be L-trivial and let 𝑎 and 𝑏 be elements of 𝑆. By aperiodicity,
𝑎 · 𝑏(𝑎𝑏)𝜔 = (𝑎𝑏)𝜔, and 𝑏 · (𝑎𝑏)𝜔 = 𝑏(𝑎𝑏)𝜔. In other words, (𝑎𝑏)𝜔 L 𝑏(𝑎𝑏)𝜔. By
L-triviality, it follows that (𝑎𝑏)𝜔 = 𝑏(𝑎𝑏)𝜔.

(⇐) Let 𝑆 be a finite semigroup such that 𝑏(𝑎𝑏)𝜔 = (𝑎𝑏)𝜔 for all elements 𝑎

and 𝑏, and let 𝑎 L 𝑏. Then there exist elements 𝑠 and 𝑡 such that 𝑠𝑎 = 𝑏 and 𝑡𝑏 = 𝑎.
Then 𝑏 = 𝑠𝑎 = 𝑠𝑡𝑏 = · · · = (𝑠𝑡)𝜔𝑏 = 𝑡 (𝑠𝑡)𝜔𝑏 = 𝑡𝑏 = 𝑎. Because this holds for any
L-related elements, 𝑆 is L-trivial. ■

A similar argument yields the following.

Lemma 4.7. 𝑆 is an R-trivial semigroup iff (𝑎𝑏)𝜔𝑎 = (𝑎𝑏)𝜔 for any two elements 𝑎
and 𝑏.

Theorem 4.8. If 𝑆 is an L- or R-trivial semigroup, then all regular elements are
idempotent.

Proof. Let 𝑆 be L-trivial and let 𝑎 and 𝑏 be elements of 𝑆 such that 𝑎𝑎 = 𝑎 and
𝑎 D 𝑏. Then there exists some 𝑐 such that 𝑎 L 𝑐 and 𝑐 R 𝑏. By L-triviality,
it follows that 𝑎 = 𝑐 and thus 𝑎 R 𝑏. Then by lemma 4.3, 𝑎𝑏 = 𝑏. Moreover,
there exists some 𝑠 such that 𝑏𝑠 = 𝑎. 𝑎 = 𝑎𝜔 = (𝑏𝑠)𝜔 = 𝑠(𝑏𝑠)𝜔 = 𝑠𝑎. Then
𝑏𝑏 = 𝑏𝑎𝑏 = 𝑏𝑠𝑎𝑏 = 𝑎𝑎𝑏 = 𝑎𝑏 = 𝑏 and 𝑏 is idempotent. It follows that all regular
elements are idempotent. A similar argument would show the same if 𝑆 were
R-trivial. ■

49

1∗

𝑐∗ 𝑏∗

𝑎∗ 𝑎𝑏∗

Figure 4.6: Egg-box of “begins with 𝑎 and ends with 𝑏”.

4.2 A First Expansion: DA
Figure 4.5 showed an aperiodic semigroup in which there exists a regular element
that is not idempotent. But there are languages that do have this property but are
neither L- nor R-trivial. Consider the language over Σ = {𝑎, 𝑏, 𝑐} of Figure 4.6 in
which all words begin with 𝑎 and end with 𝑏, shown only as its egg-box. It is neither
L- nor R-trivial, but every element is idempotent. Thus it makes sense to include a
new class, above L and R and below H as shown in Figure 4.7, containing all and
only those aperiodic monoids whose regular elements are idempotent. The following
theorem motivates the naming of this class.

Theorem 4.9. If 𝑆 is a finite aperiodic semigroup then all of its regular elements are
idempotent iff its regular D-classes are semigroups.

Proof. (⇒) Let 𝑆 be a finite aperiodic semigroup in which all regular elements are
idempotent, and let 𝑎 and 𝑏 be D-related regular elements of 𝑆. Notice that 𝑎 and 𝑏

are idempotent. Then there exists some 𝑐 such that 𝑎 L 𝑐 and 𝑐 R 𝑏. In this case
we have that 𝑐𝑐 = 𝑐 and by lemma 4.3 𝑎𝑐 = 𝑎 and 𝑏𝑐 = 𝑐. Then 𝑎 = 𝑎𝑐 = 𝑎𝑏𝑐. So
𝑎 = 1 · 𝑎𝑏 · 𝑐 and 𝑎𝑏 = 1 · 𝑎 · 𝑏. In other words, 𝑎J 𝑎𝑏 and because 𝑆 is finite it
follows that 𝑎 D 𝑎𝑏. The regular D-class is closed under the semigroup operation
and is thus a subsemigroup.

(⇐) Let 𝑆 be a finite aperiodic semigroup whose regular D-classes are subsemi-
groups of 𝑆, and let 𝑎 be regular. Then 𝑎J 𝑎2 by the subsemigroup property, and
thus by Corollary 4.5.1, 𝑎 H 𝑎2. But 𝑆 is aperiodic and thus H-trivial, so 𝑎 = 𝑎𝑎.
This holds for any regular element, so all regular elements are idempotent. ■

This DA class has been widely studied, with Tesson and Thérien (2002) even
calling it a “jewel” in their detailed survey of the class for the many properties that
characterize it alongside the many fragments of logic that it describes. If fo𝑘 [<]
denotes the subset of first-order logic with general precedence restricted to at most
𝑘 different variables, then DA = fo2 [<] (Thérien and Wilke, 1998). Pin and Weil
(1997) show that this class also characterizes the class of languages definable in
fo [<] with at most one block of existential quantifiers and one block of universal
quantifiers, in either order. And Etessami et al. (1997) show thatDA is also equivalent

50

1

J

L R

DA

H

Figure 4.7: The basic hierarchy augmented with DA.

1∗

𝑏∗ 𝑎∗

𝑏𝑎

𝑎𝑏∗

Figure 4.8: Egg-box for “contains 𝑎 . . . 𝑏”.

to a fragment of temporal logic, the fragment of unary temporal logic allowing
only the “eventually in the future” (|) and “eventually in the past” (x) operators,
tl[|,x].

4.3 Piecewise Testable Languages and Subclasses
A language is piecewise testable (pt) iff there is some 𝑘 for which it is defined by a
Boolean combination of 𝑘-subsequences. Simon (1975) characterizes the piecewise
testable languages as exactly those whose syntactic monoids areJ-trivial. That is,
J corresponds to pt. Recall that a language and its complement share a structure.
The languages piecewise testable in the strict sense (strictly piecewise) discussed by
Rogers et al. (2010) then cannot be characterized by their semigroups alone. This
point is discussed further in the conclusion of this chapter.

However, let us consider the subclass of H containing only those monoids which
are commutative. Denote this class Acom, for aperiodic and commutative. By
commutativity, it follows that any permutation of a word behaves the same as the
word itself. Namely, one can sort its letters under some ordering imposed on Σ, and
so long as the quantities are unchanged, the resulting word is identical in the eyes of
the language. Further by aperiodicity, there exists for each symbol some threshold 𝑡𝑎

51

1

JI

Acom

J

L R

DA

H

Figure 4.9: The hierarchy augmented with Acom and JI.

such that 𝑎𝑡𝑎 = 𝑎𝑡𝑎+1. Denote by 𝑡 the least common multiple of these thresholds.
Any span longer than length 𝑡 of a single symbol can be compressed to a span of
length 𝑡, either in the original word or in its sorted counterpart. That is, if a language
𝐿 has a syntactic monoid in Acom then two words 𝑤 and 𝑣 are M∼-related if they have
the same multiset of symbols saturating at a count of 𝑡, that is, where counts higher
than 𝑡 are reduced to 𝑡 itself. It is easy to argue that such a language must be in J, as
the appearance of some symbol 𝑎 at least 𝑘 times is simply the 𝑘-long subsequence
consisting entirely of 𝑎, and any language in Acom is a Boolean expression over
these. The algebraic proof is just as trivial.

Theorem 4.10. Acom ⊊ J

Proof. Let 𝑆 be a monoid in Acom, and let 𝑎 and 𝑏 be J-related elements of 𝑆.
Then there exist elements 𝑠, 𝑡, 𝑢, and 𝑣 such that 𝑠𝑎𝑡 = 𝑏 and 𝑢𝑏𝑣 = 𝑎. Then by
commutativity, both 𝑎𝑠𝑡 = 𝑏 and 𝑏𝑢𝑣 = 𝑎, so 𝑎 R 𝑏, and both 𝑠𝑡𝑎 = 𝑏 and 𝑢𝑣𝑏 = 𝑎,
so 𝑎 L 𝑏. Then 𝑎 H 𝑏 and by aperiodicity it follows that 𝑎 = 𝑏. ■

There are monoids in J that are not in Acom, such as that shown in Figure 4.8.
Notice that 𝑎𝑏 ≠ 𝑏𝑎 and therefore the monoid is not commutative. Thus the inclusion
is proper. An even smaller class arises when we fix the threshold to a count of one.
Rather than require the general 𝑎𝜔+1 = 𝑎𝜔, we fix 𝑎2 = 𝑎. In other words, this is
the restriction to monoids both idempotent and commutative, exactly the class of
semilattices.

Theorem 4.11. 𝑀 is a semilattice iff 𝑀 ∈ J and 𝑎2 = 𝑎 for all 𝑎 ∈ 𝑀 .

Proof. The forward direction is trivial, so we focus here on the converse. Let 𝑀
be an idempotentJ-trivial monoid. Then 𝑥𝑦 = 𝑥𝑦𝑥𝑦 and 𝑦𝑥 = 𝑦𝑥𝑦𝑥, and therefore

52

𝑥𝑦 J 𝑦𝑥. By J-triviality, 𝑥𝑦 = 𝑦𝑥. Now 𝑀 is idempotent and commutative, a
semilattice. ■

Denote this smaller class JI, for “J-trivial and idempotent”. The language 𝐿

in which all words contain two or more instances of 𝑎 is in Acom but not in JI, as
𝑎𝑎 ∈ 𝐿 but 𝑎 ∉ 𝐿 and thus 𝑎2 ≠ 𝑎. Adding these new classes into our hierarchy
results in Figure 4.9.

4.4 Equations, Varieties, and a Cloned Hierarchy
A semigroup (monoid) variety in the sense of Birkhoff is a collection V of semigroups
(monoids) closed under the taking of subsemigroups (submonoids), under homo-
morphic images, and under products. A pseudovariety in the sense of Eilenberg
and Schützenberger (1976) is like a variety, except that the semigroups (monoids)
are assumed to be finite, and only finite products are considered. An important
consequence of this is that any class of formal languages that is characterized by a
(pseudo)variety is closed under (finitely many applications of) the Boolean operations.
A class is a (pseudo)variety iff it is defined by equations in terms of variables that
must apply for any instantiation of those variables, essentially equations with implicit
universal quantifiers (Eilenberg and Schützenberger, 1976; Howie, 1995). As we are
considering here only finite structures, the word “variety” will be used generally to
mean both “variety” and “pseudovariety”.

The classes we have discussed thus far are all defined not just by equations, but
by a finite collection of equations. Each is a monoid variety. Lemmas 4.6 and 4.7
provide the equations for L and R, and one notes that J = L ∩ R, the collection of
structures that are both L- and R-trivial. H is defined by aperiodicity. As discussed
in the previous section, Acom is aperiodicity and commutativity, and JI is the special
case of Acom where 𝑥𝜔 = 𝑥. And 1 is of course 𝑥 = 𝑦. All that remains is to find a
set of equations for DA, which either includes or implies that of H. An equation is
provided below, and the resulting identities summarized in Table 4.1.

Theorem 4.12 (Tesson and Thérien, 2002). A monoid is in DA iff whenever 𝑒2 = 𝑒

and 𝑒 = 𝑢𝑠𝑣 it holds that 𝑒𝑠𝑒 = 𝑒.

Proof. (⇒) Suppose 𝑀 ∈ DA and let 𝑒 = 𝑢𝑠𝑣 such that 𝑒2 = 𝑒. Then 𝑒 = (𝑢𝑠𝑣)𝜔.
This isJ-related to the idempotent 𝑓 = (𝑠𝑣𝑢)𝜔; 𝑠𝑣 ·𝑒 ·𝑢 = 𝑓 and 𝑢 · 𝑓 ·𝑠𝑣 = 𝑒. Because
𝑀 ∈ DA, 𝑒 J 𝑒 𝑓 and by lemma 4.5 it follows that 𝑒 R 𝑒 𝑓 . More specifically,
𝑒 𝑓 = (𝑢𝑠𝑣)𝜔 (𝑠𝑣𝑢)𝜔 = (𝑢𝑠𝑣)𝜔𝑠 · 𝑣𝑢(𝑠𝑣𝑢)𝜔. If 𝑒 𝑓 𝑡 = 𝑒, then 𝑒𝑠 · 𝑣𝑢(𝑠𝑣𝑢)𝜔𝑡 = 𝑒.
And of course 𝑒 · 𝑠 = 𝑒𝑠, so 𝑒 R 𝑒𝑠. Further, by Theorem 4.9, 𝑒𝑠 is idempotent. By
lemma 4.3, 𝑒𝑠𝑒 = 𝑒.

(⇐) Let 𝑀 be a monoid such that for all elements 𝑠 and all idempotents 𝑒 such
that 𝑒 = 𝑢𝑠𝑣 for some 𝑢 and 𝑣, 𝑒𝑠𝑒 = 𝑒. Notice that by hypothesis, for any 𝑥 it

53

Table 4.1: Equations defining our basic hierarchy.
Class Description Equations

1 Trivial ⟦𝑥 = 𝑦⟧
JI Semilattices ⟦𝑥2 = 𝑥, 𝑥𝑦 = 𝑦𝑥⟧

Acom Aperiodic and Commutative ⟦𝑥𝜔+1 = 𝑥𝜔, 𝑥𝑦 = 𝑦𝑥⟧
J J-trivial ⟦𝑦(𝑥𝑦)𝜔 = (𝑥𝑦)𝜔 = (𝑥𝑦)𝜔𝑥⟧
L L-trivial ⟦𝑦(𝑥𝑦)𝜔 = (𝑥𝑦)𝜔⟧
R R-trivial ⟦(𝑥𝑦)𝜔𝑥 = (𝑥𝑦)𝜔⟧
DA Regular elements idempotent ⟦(𝑥𝑦𝑧)𝜔𝑦(𝑥𝑦𝑧)𝜔 = (𝑥𝑦𝑧)𝜔⟧
H Aperiodic ⟦𝑥𝜔+1 = 𝑥𝜔⟧

holds that 𝑥𝜔𝑥𝑥𝜔 = 𝑥𝜔, so 𝑥𝜔𝑥𝑥𝜔𝑥 = 𝑥𝜔𝑥, and thus 𝑥𝜔+1 is idempotent, but 𝑥𝜔 is the
unique idempotent power of 𝑥, so 𝑥𝜔+1 = 𝑥𝜔 and thus 𝑀 ∈ H. Further, let 𝑒 J 𝑠

such that 𝑒2 = 𝑒. Then 𝑒𝑠𝑒 = 𝑒, and by right-multiplying by 𝑠 we have 𝑒𝑠𝑒𝑠 = 𝑒𝑠.
Because 𝑒𝑠 = 𝑒 · 𝑠 · 1, by hypothesis it holds that 𝑒𝑠 · 𝑠 · 𝑒𝑠 = 𝑒𝑠. By right-multiplying
by 𝑒 we have 𝑒𝑠𝑠𝑒𝑠𝑒 = 𝑒𝑠𝑒 = 𝑒. In other words, 𝑒 = 𝑒 · 𝑠𝑠 · 𝑒𝑠𝑒, which means
𝑀𝑒𝑀 ⊆ 𝑀𝑠𝑠𝑀. But 𝑀𝑒𝑀 = 𝑀𝑠𝑀, and thus 𝑀𝑠𝑀 ⊆ 𝑀𝑠𝑠𝑀 ⊆ 𝑀𝑠𝑀, and
𝑠J 𝑠𝑠. By Corollary 4.5.1, 𝑠2 H 𝑠, and thus 𝑠 = 𝑠2. This argument holds for any
regular element, so 𝑀 ∈ DA. ■

Corollary 4.12.1. 𝑀 ∈ DA iff (𝑥𝑦𝑧)𝜔𝑦(𝑥𝑦𝑧)𝜔 = (𝑥𝑦𝑧)𝜔 for all 𝑥, 𝑦, and 𝑧.

Recall that the local subsemigroup of 𝑆 generated by 𝑎 is 𝑎𝑆𝑎, and that the
local subsemigroup generated by an idempotent is a submonoid. If V is a monoid
variety, we can construct a semigroup variety LV where for every idempotent
𝑒, the submonoid 𝑒𝑆𝑒 is in V. The equations for the new semigroup variety
are precisely those of the monoid variety wherein each variable is wrapped in
𝛼𝜔 for some unused variable 𝛼. This ensures that elements refer to elements
of 𝑒𝑆𝑒, where 𝑒 = 𝛼𝜔. For example, a semigroup is locally a semilattice iff
(𝛼𝜔𝑥𝛼𝜔)2 = 𝛼𝜔𝑥𝛼𝜔 and 𝛼𝜔𝑥𝛼𝜔𝑦𝛼𝜔 = 𝛼𝜔𝑦𝛼𝜔𝑥𝛼𝜔. Because varieties are closed
under taking of subsemigroups, V ⊆ LV. Further, because every monoid contains 1,
if a monoid is in LV then it must be in V. But in general there may be semigroups 𝑆
that are not monoids in LV where 𝑆1 is not in V.

For example consider the language of words containing an 𝑎𝑏 substring shown
in Figure 4.5 on page 49. The identity 1 is the equivalence class of the empty string,
𝜀, and this class is singleton; no other element occupies this class. That is, 1 is
not in the syntactic semigroup Σ+/M∼. The remaining idempotents are 𝑎, 𝑏, 𝑐, and
𝑎𝑏 (everything but 𝑏𝑎). Note that 𝑥𝑆 is the row of the Cayley table containing 𝑥,
and so 𝑥𝑆𝑥 is each of these elements right-multiplied by 𝑥. Let us consider each

54

1

JI

Acom

J

L R

DA

L1

LJI

LAcom

LJ

LL LR

LDA

H

Figure 4.10: The hierarchy cloned to include local varieties.

idempotent’s local subsemigroup in turn. The local subsemigroup generated by 𝑎 is
{𝑎, 𝑎𝑏}, because {𝑎, 𝑎𝑏, 𝑐} · 𝑎 = {𝑎, 𝑎𝑏}. Recall that 𝑎 is necessarily the identity of
this resulting submonoid, and 𝑎𝑏 = 𝑎𝑏𝑎𝑏. The result is an idempotent, commutative
monoid: a semilattice. The local subsemigroup generated by 𝑏 is {𝑏, 𝑎𝑏} and that of
𝑐 is {𝑐, 𝑎𝑏}, also semilattices. Finally the local subsemigroup generated by 𝑎𝑏 is
{𝑎𝑏}, trivial, and thus also a semilattice. All are semilattices, so this pattern is in
LJI despite not being in JI itself or even in DA.

Let us prove one simple theorem before constructing a fuller hierarchy. The
remaining classes will then be shown to be distinct by means of separating examples.
The memberships and nonmemberships have been verified by plebby, software
which will be discussed in Chapter 9.

Theorem 4.13. LH = H.

Proof. Let 𝑆 be a finite semigroup such that 𝑆1 is not in H. Then there exists some
𝑎 and natural numbers 𝑚 and 𝑛 such that 𝑎𝑚 = 𝑎𝑚+𝑛 and 𝑎𝑚 ≠ 𝑎𝑚+1. Then 𝑎𝑚𝑛

is idempotent and the identity of the subgroup generated by 𝑎𝑚𝑛+1, a nontrivial
subgroup of 𝑎𝑚𝑛𝑆𝑎𝑚𝑛. Thus this particular local subsemigroup is not H-trivial, and
𝑆 ∉ LH. ■

To show that the LV classes are separated from one another, we will begin at the
top and work downward. For each class LV, we explore one language which is LV
but not in any lower class. To show incomparability between the branches, we first

55

𝑎𝑏𝑐∗ 𝑎𝑏𝑎∗ 𝑎𝑏∗

𝑏𝑐∗ 𝑏𝑐𝑎∗ 𝑏𝑐𝑎𝑏∗

𝑑𝑏𝑐∗ 𝑐𝑎∗ 𝑐𝑎𝑏∗

𝑏𝑑𝑐∗ 𝑏𝑑𝑐𝑏∗

𝑐∗ 𝑐𝑏

𝑑𝑐∗ 𝑑𝑐𝑏∗

𝑏𝑎𝑑∗ 𝑏𝑎 𝑏𝑎𝑑𝑏∗

𝑎𝑑∗ 𝑎∗ 𝑎𝑑𝑏∗

𝑏𝑑∗ 𝑏∗

𝑑∗ 𝑑𝑏∗

1∗

↦→

𝑎𝑏𝑎∗ 𝑎𝑏𝑐∗

𝑏𝑐𝑎∗ 𝑏𝑐∗

𝑏𝑎𝑑∗ 𝑏𝑑𝑐∗

𝑏𝑑∗

Figure 4.11: Egg-box for “contains 𝑎 not preceding 𝑏𝑐 and 𝑐 not following 𝑎𝑏”.

find a monoid 𝑀 in the lowest superclasses of V that is not in LV, and then find a
semigroup 𝑆 ∈ LV such that 𝑆1 ∉ DA, and therefore not in any of the lower classes.
We end with a surprising containment. For now, Figure 4.10 shows the extended
hierarchy.

4.4.1 Locally DA
Consider the language over Σ = {𝑎, 𝑏, 𝑐, 𝑑} of Figure 4.11 in which all words contain
an 𝑎 that is not followed by a 𝑏𝑐 substring anywhere later in the word and also
contain a 𝑐 not preceded by an 𝑎𝑏 substring anywhere earlier in the word. The
idempotent 𝑏𝑑 is highlighted, and its local subsemigroup placed on the right. The
full monoid 𝑆1 is not in DA, because 𝑐𝑏 and 𝑏𝑎 are regular but not idempotent, and
the local subsemigroup generated by 𝑏𝑑 is neither L- nor R-trivial, so LDA is a
proper superclass of each of DA, LL, and LR.

Thérien and Wilke (1998, see also Krebs et al., 2020) show that this class
characterizes precisely the set of languages definable in fo2 [<,◁], the superset of
fo2 [<] where immediate-successor is available. Rather, they show that DA ∗ L1
characterizes this class2, and Almeida (1996) shows thatDA∗L1 = LDA. This class
also characterizes precisely the fragment of unary temporal logic using ⊕ (“next”)
and ⊖ (“previously”) in addition to| andx, tl[|,x, ⊕, ⊖] (Etessami et al., 1997).

2The ∗ refers to a specific sort of combination that will not be discussed in detail in this chapter.

56

1∗

𝑐∗ 𝑐𝑏

𝑑∗ 𝑏∗

𝑏𝑐∗ 𝑎∗ 𝑎𝑏∗

𝑏∗

𝑎𝑏∗ 𝑏𝑐∗

𝑐∗

𝑎∗ 𝑏𝑐∗

𝑑∗

𝑎∗ 𝑏𝑐∗

Figure 4.12: A language in LL separating this class from LR and DA.

𝑐∗

𝑏𝑎∗ 𝑏∗

𝑎∗ 𝑎𝑏∗

Figure 4.13: A language in DA but not LL, proving incomparability

4.4.2 Locally L- or R-Trivial
The language separating LDA from DA is a conjunction of two constraints: that
all words contain an 𝑎 nowhere followed by a 𝑏𝑐, and that all words contain a
𝑐 nowhere preceded by an 𝑎𝑏. Let us consider only the first of these. That is,
consider the language over Σ = {𝑎, 𝑏, 𝑐, 𝑑} where all words contain an 𝑎 not followed
by 𝑏𝑐. This language is shown in Figure 4.12 alongside each of its nontrivial
idempotent-generated local subsemigroups.

ButDA contains languagesLL does not, such as the language overΣ = {𝑎, 𝑏, 𝑐, 𝑑}
shown in Figure 4.13 in which the first instance of {𝑎, 𝑏}, if any, is 𝑎 and the last,
if any, is 𝑏. That is, when projected to the {𝑎, 𝑏} tier, a word is empty or it begins
with 𝑎 and ends with 𝑏. I have used 𝑐 in place of 1 to mark the identity in order
to indicate that 𝑐 ∈ [𝜀], that 1 ∈ Σ+/M∼. This monoid is not in L, and because the
identity is present, the entire monoid is an idempotent-generated local subsemigroup
(generated by 1), so this is also not LL. But every element (and in particular every
regular element) is idempotent, so it is in DA. This process of describing a pattern
on some tier in order to ensure that the entire monoid is an idempotent-generated
local subsemigroup is generally applicable.

Theorem 4.14. If V1 ⊊ V2 are monoid varieties, then LV1 ⊊ LV2.

Proof. We proceed by construction. Let 𝑀 be a monoid in V2 − V1. Adjoin a new
symbol 𝜎 which acts as the identity. Then (Σ ∪ {𝜎})+/M∼ is the same monoid, and
the entire monoid is an idempotent-generated local subsemigroup. Then there is a
local subsemigroup in V2 − V1, and so the resulting structure cannot be in LV1. ■

57

The other component of our example LDA language, that all words contain a 𝑐

nowhere preceded by an 𝑎𝑏 substring, can be verified to be in LR but not LL or DA.
Thus we conclude that the topmost classes of the cloned hierarchy are distinct and
incomparable as depicted.

4.4.3 LocallyJ-Trivial
Using Theorem 4.14 of the previous section, one can construct a monoid in L or R
such that the tier-based preprojection of the associated language is not LJ. Moreover,
the language of Figure 4.8 on page 51 is (locally)J-trivial but not LAcom, as 𝑐 is
the identity and the entire monoid is an idempotent-generated subsemigroup which
is not in Acom.

The dot-depth hierarchy, introduced by Cohen and Brzozowski (1971) and later
shown to be infinite when the alphabet consists of more than a single letter by
Brzozowski and Knast (1978), offers a measure of how many levels of concatenation
are required to express a star-free language. As noted by Knast (1983), Simon (of
piecewise-testable fame) conjectured that the languages of dot-depth at most one
were characterized by LJ. A language 𝐿 is of dot-depth at most one iff there are
some natural numbers 𝑗 and 𝑘 such that for all strings 𝑢 and 𝑣 in Σ∗ it holds that if 𝑢
and 𝑣 share the same prefix and suffix of length 𝑘 − 1 and have the same 𝑗-tuples
of 𝑘-factors, then either both 𝑢 ∈ 𝐿 and 𝑣 ∈ 𝐿 or both 𝑢 ∉ 𝐿 and 𝑣 ∉ 𝐿. A word 𝑤

contains a 𝑗-tuple of 𝑘-factors (a ⟨ 𝑗 , 𝑘⟩-factor) ⟨𝑥1, . . . , 𝑥 𝑗 ⟩ iff for each 𝑖 from 1 to
𝑗 it holds that 𝑤 = 𝑢𝑖𝑥𝑖𝑣𝑖 for some 𝑢𝑖, 𝑣𝑖 ∈ Σ∗ where the elements of the sequence
⟨𝑢1, . . . , 𝑢 𝑗 ⟩ are of strictly increasing length.

This is reminiscent of the generalized subsequence languages discussed by Heinz
(2010a), sometimes referred to as piecewise-locally testable (plt) (Rogers and
Lambert, 2019a). These languages are also characterized by containment of 𝑗-tuples
of 𝑘-factors, except that containment is defined slightly differently. A word 𝑤 contains
the tuple ⟨𝑥1, . . . , 𝑥 𝑗 ⟩ in this sense iff 𝑤 = 𝑢0𝑥1𝑢1 . . . 𝑥 𝑗𝑢 𝑗 for some 𝑢0, . . . , 𝑢 𝑗 ∈ Σ∗.
This latter class has been characterized logically as all and only those languages
definable by Boolean combinations of factors that include both the successor and
general precedence relations.

Knast (1983) shows that dot-depth one is precisely characterized by a variety
J ∗ L1. However, it is a theorem that V ∗ L1 ⊆ LV for any variety V (Straubing,
1985), and in this case the containment is proper (Knast, 1983). If the generalized
subsequence languages and the languages of dot-depth at most one are distinct
classes, then LJ properly contains both.

4.4.4 Locally Aperiodic and Commutative
The language over Σ = {𝑎, 𝑏, 𝑐, 𝑑} shown in Figure 4.14 is LAcom but neither
LJI nor even DA. This language consists of all and only those words that contain

58

𝑐∗

𝑐∗ 𝑎∗

𝑏∗ 𝑏𝑎

𝑎𝑏𝑎 𝑎𝑏

𝑏𝑎𝑏𝑎 𝑏𝑎𝑏

𝑎𝑏𝑎𝑏

Figure 4.14: A language in LAcom but not LJI or DA.

two distinct instances of the 𝑎𝑏 substring. This is not in LJI because the equation
(𝛼𝜔𝑥𝛼𝜔)2 = 𝛼𝜔𝑥𝛼𝜔 is not satisfied for 𝛼 = 𝑎 and 𝑥 = 𝑏; 𝑎𝜔𝑏𝑎𝜔 = 𝑎𝑏𝑎 but
(𝑎𝑏𝑎)2 = 𝑎𝑏𝑎𝑏. Similarly the language of Figure 4.5 on page 49 requires only
one instance of 𝑎𝑏 and is neither L1 nor DA. It is not in L1 because the equation
𝛼𝜔𝑥𝛼𝜔 = 𝛼𝜔𝑦𝛼𝜔 is not satisfied for 𝛼 = 𝑥 = 𝑎 and 𝑦 = 𝑏; 𝑎𝜔𝑎𝑎𝜔 = 𝑎 but
𝑎𝜔𝑏𝑎𝜔 = 𝑎𝑏𝑎 = 𝑎𝑏.

It is a theorem of Almeida (1989) that LAcom is a characterization of the
generalized locally testable class of Thomas (1982) in which words that have the
same multiset of length-𝑘 substrings saturating at a count of 𝑡 are treated identically.
This nomenclature clashes with another meaning of the phrase “generalized locally
testable” which will be discussed later, and so we use the more common “locally
threshold testable” name for this class, introduced by Beauquier and Pin (1989). The
special case where 𝑡 = 1 is the locally testable class, characterized independently by
Brzozowski and Simon (1973) and by McNaughton (1974) as LJI.

4.4.5 Locally Trivial
Theorem 4.15. L1 ⊊ DA.

Proof. Recall the equational description of DA — (𝑥𝑦𝑧)𝜔𝑦(𝑥𝑦𝑧)𝜔 = (𝑥𝑦𝑧)𝜔. If a
semigroup 𝑆 is locally trivial, then 𝛼𝜔𝑥𝛼𝜔 = 𝛼𝜔𝑦𝛼𝜔. Fix an idempotent (𝑠𝑡𝑢)𝜔 by
setting 𝛼 = 𝑠𝑡𝑢. Then consider the case where 𝑥 = 𝑡 and 𝑦 = (𝑠𝑡𝑢)𝜔. The equation for
local triviality then says that (𝑠𝑡𝑢)𝜔𝑡 (𝑠𝑡𝑢)𝜔 = (𝑠𝑡𝑢)𝜔 (𝑠𝑡𝑢)𝜔 (𝑠𝑡𝑢)𝜔 = (𝑠𝑡𝑢)𝜔. Notice
that this is identical to the equation for DA under renaming of variables (𝑠 ↦→ 𝑥,
𝑡 ↦→ 𝑦, 𝑢 ↦→ 𝑧). ■

In fact we can go one step further.

Theorem 4.16. A semigroup is in L1 iff 𝑆1 ∈ DA and every idempotent lies in the
same D-class.

59

Proof. (⇒) Let 𝑆 ∈ L1. Then for all idempotents 𝑒 and for all elements 𝑥, it holds
that 𝑒𝑥𝑒 = 𝑒. In particular this holds for an 𝑥 in the minimal ideal of 𝑆, an 𝑥 such that
for all 𝑦, 𝑥 ⩽J 𝑦. Then 𝑒𝑥𝑒 must also be in the minimal ideal, but 𝑒𝑥𝑒 = 𝑒, so 𝑒 is
itself in the minimal ideal. This means that all idempotents are in the sameJ-class,
and by finiteness they are in the same D-class.

(⇐) Now suppose instead that 𝑆 is a finite member of DA whose idempotents all
lie in the same D-class. Let 𝑒 be idempotent and 𝑥 be an arbitrary element. Note that
for any 𝑎 in the minimal ideal, 𝑎𝜔 remains in the minimal ideal, so by hypothesis 𝑒 is
in this minimal ideal. This implies that 𝑒 ⩽J 𝑥 and thus 𝑒𝑥𝑒 = 𝑒 by the DA equation.
As this holds for all 𝑥, 𝑆 ∈ L1. ■

Thus we will certainly not find an element of L1 that is not in DA. But we can
find a member of L1 that is in neither L nor R. Indeed, we have done so already:
the language in which words begin with 𝑎 and end with 𝑏 shown in Figure 4.6 on
page 50 is locally trivial but neither L- nor R-trivial. However the language over
Σ = {𝑎, 𝑏, 𝑐} in which all words contain both 𝑏 and 𝑐 is verifiably a semilattice but
not in L1.

The varietyL1 characterizes what are known as the generalized definite languages,
defined by Boolean combinations of permitted prefixes and suffixes (Zalcstein, 1972;
Brzozowski and Simon, 1973; McNaughton, 1974). Recall that the equation for L1
is 𝛼𝜔𝑥𝛼𝜔 = 𝛼𝜔𝑦𝛼𝜔 for all 𝑥 and 𝑦. Specifically this holds for 𝑦 = 𝛼𝜔, so L1 is more
simply 𝛼𝜔𝑥𝛼𝜔 = 𝛼𝜔.

What if this were just a one-sided multiplication? Define D by 𝑥𝛼𝜔 = 𝛼𝜔 (i.e.
𝑆𝑒 = 𝑒) and K by 𝛼𝜔𝑥 = 𝛼𝜔 (i.e. 𝑒𝑆 = 𝑒), and define F as D ∩K. Zalcstein (1972)
shows that D corresponds precisely to the definite languages, those characterized by
Boolean combinations of permitted suffixes and that K corresponds to the reverse
definite languages, those characterized by Boolean combinations of permitted prefixes.
This makes sense, as the idempotents 𝛼𝜔 are the sufficiently-long suffixes or prefixes
of allowed words, alongside those disallowed words long enough to not be extendable
to a valid word. The definite languages have been explored in depth (Perles et al.,
1963; Ginzburg, 1966), and this class will be particularly relevant in the next chapter.

Theorem 4.17. A language is in F iff it or its complement is finite.

Proof. We shall show that for any semigroup in F there is exactly one idempotent,
0. The only cycles in the corresponding Cayley graph will then be self-loops on 0.
Translating to automata, if this is a rejecting state, then the canonical trim acceptor
is acyclic, thus recognizing a finite language. If it is accepting, then it is rejecting
within the complement, and the complement is finite.

Let 𝑒 and 𝑓 be idempotents. Then the equations for D give us that 𝑒 = 𝑒 𝑓 . The
equations for K give us that 𝑓 = 𝑒 𝑓 , and thus 𝑓 = 𝑒 𝑓 = 𝑒. Thus there is only one

60

idempotent. Moreover, 𝑒𝑥 = 𝑒 = 𝑥𝑒 for all 𝑥, again by the D and K equations, so 𝑒 is
a zero. ■

The following theorems follow the same structure as Theorem 4.16.

Theorem 4.18. A semigroup 𝑆 is in D iff 𝑆1 ∈ L and every idempotent lies in the
same D-class.

Theorem 4.19. A semigroup 𝑆 is in K iff 𝑆1 ∈ R and every idempotent lies in the
same D-class.

Theorem 4.20. A semigroup 𝑆 is in F iff 𝑆1 ∈ J and every idempotent lies in the
same D-class.

This suggests that the diamond from J through DA is a generalization of some
sort of the diamond from F through L1. And indeed as discussed by (Brzozowski
and Fich, 1984), this is exactly the case. Define 𝑀𝑒 to be the set generated by
{𝑔: 𝑒 ⩽J 𝑔}, that is, generated by the set of elements 𝑔 such that 𝑒 = 𝑠𝑔𝑡 for some 𝑠

and 𝑡. Each element is associated with a subalphabet, and we consider the restriction
to the free monoid over that subalphabet.

Lemma 4.21. If 𝑀 ∈ DA then 𝑀𝑒 = {𝑔: 𝑒 ⩽J 𝑔}, that is, no new elements beyond
these generators are produced.

Proof. Let 𝑀 be a monoid in DA and let 𝑒 be an idempotent of 𝑀. Further let 𝑎
and 𝑏 be elements of 𝑀 such that for some 𝑠, 𝑡, 𝑢 and 𝑣 it holds that 𝑠𝑎𝑡 = 𝑒 = 𝑢𝑏𝑣.
Then by the DA properties, we have 𝑒 = (𝑠𝑎𝑡)𝜔 = (𝑠𝑎𝑡)𝜔𝑎(𝑠𝑎𝑡)𝜔 = 𝑒𝑎𝑒, and by
right-multiplying by 𝑎 we see that 𝑒𝑎 = 𝑒𝑎𝑒𝑎 is an idempotent. However because
𝑒 = 𝑢𝑏𝑣 we see that 𝑒𝑎 = (𝑢 · 𝑏 · 𝑣𝑎)𝜔 = (𝑢𝑏𝑣𝑎)𝜔𝑏(𝑢𝑏𝑣𝑎)𝜔 = 𝑒𝑎𝑏𝑒𝑎. By one
further right-multiplication by 𝑒 we find 𝑒𝑎𝑒 = 𝑒𝑎𝑏𝑒𝑎𝑒, and we have already shown
that 𝑒𝑎𝑒 = 𝑒, so we have 𝑒 = 𝑒𝑎𝑏𝑒. In other words, 𝑒 ⩽J 𝑎𝑏. ■

We will now consider the move from D to L, and the others follow the same
pattern. The equation for D is 𝑥𝛼𝜔 = 𝛼𝜔. Here, 𝛼𝜔 is an arbitrary idempotent;
to restrict to those idempotents 𝑒 for which 𝑥 ∈ 𝑀𝑒, use 𝑠𝑥𝑡 instead of 𝛼, as all
such idempotents are of the form (𝑠𝑥𝑡)𝜔 by lemma 4.21. If we would like to say
𝑀𝑒𝑒 = {𝑒}, our equation becomes (𝑠𝑥𝑡)𝜔𝑥 = (𝑠𝑥𝑡)𝜔.

Theorem 4.22. A monoid 𝑀 satisfies 𝑀𝑒𝑒 = {𝑒} for all idempotents 𝑒 iff 𝑀 ∈ L.

Proof. (⇒) Let 𝑀 satisfy the equation 𝑥(𝑠𝑥𝑡)𝜔 = (𝑠𝑥𝑡)𝜔. Instantiate 𝑠 ↦→ 𝑎, 𝑡 ↦→ 1,
and 𝑥 ↦→ 𝑏. This yields 𝑏(𝑎𝑏)𝜔 = (𝑎𝑏)𝜔, exactly the equation for L under renaming
of variables.

61

1

JI

Acom

J

L R

DA

F

D K

L1

LJI

LAcom

LJ

LL LR

LDA

H

Figure 4.15: The hierarchy including sub-L1 classes and 𝑀𝑒-based connections.

(⇐) Now instead let 𝑀 satisfy the equation 𝑏(𝑎𝑏)𝜔 = (𝑎𝑏)𝜔. Consider the
instantiation 𝑎 ↦→ 𝑠𝑔 and 𝑏 ↦→ 𝑡. Then 𝑡 (𝑠𝑔𝑡)𝜔 = (𝑠𝑔𝑡)𝜔. Now instead consider the
instantiation 𝑎 ↦→ 𝑠 and 𝑏 ↦→ 𝑔𝑡. Then (𝑠𝑔𝑡)𝜔 = 𝑔𝑡 (𝑠𝑔𝑡)𝜔 = 𝑔(𝑠𝑔𝑡)𝜔, precisely the
equation for 𝑀𝑒𝑒 = {𝑒} under renaming of variables. ■

Theorem 4.23. A monoid 𝑀 satisfies 𝑒𝑀𝑒 = {𝑒} for all idempotents 𝑒 iff 𝑀 ∈ R.

Combining these characterizations of L and R, we find that 𝑀 ∈ J iff 𝑀

satisfies 𝑀𝑒𝑒𝑀𝑒 = {𝑒}. Moving upward instead of downward, a restatement of
Corollary 4.12.1 is the following.

Theorem 4.24. A monoid 𝑀 satisfies 𝑒𝑀𝑒𝑒 = {𝑒} for all idempotents 𝑒 iff 𝑀 ∈ DA.

Corollary 4.24.1. DA is precisely the class of G-trivial monoids, defined by
Brzozowski and Fich (1984) as those monoids satisfying 𝑒𝑀𝑒𝑒 = {𝑒}.

Figure 4.15 depicts the cloned hierarchy with the classes below L1 included as
well as these connections across the branches formed by using 𝑀𝑒.

62

4.5 Tier-Based Classes
Consider the monoid of Figure 4.13 on page 57. This would be in L1 if not for the
fact that 𝑐 is the identity, a nonsalient symbol. Recall from Chapter 3 the notion of the
projected subsemigroup of a language, and define for each semigroup variety V a new
class ⟦V⟧T containing all and only those languages whose projected subsemigroups
are in V. In particular, this precisely characterizes the tier-based locally testable and
tier-based locally threshold testable classes of Chapter 3 as ⟦LJI⟧T and ⟦LAcom⟧T,
respectively.

If V is a variety, then ⟦V⟧T is always a superclass of V, though the containment
is not necessarily proper. If V is a monoid variety, then ⟦V⟧T is the same as V, as
the identity must be readjoined when checking for membership. Thus for each of
the eight classes making up our basic hierarchy, there is no distinct tier-based class.
However if V is a semigroup variety, then in general the tier-based variant may be
distinct, as we have seen with LJ1 (locally testable) and ⟦LJ1⟧T (tier-based locally
testable) in the previous chapter. Recall that LV is defined to contain all and only
those semigroups 𝑆 such that 𝑒𝑆𝑒 ∈ 𝑉 , and ⟦V⟧T is defined to contain all and only
those monoids 𝑆1 such that 𝑆 ∈ 𝑉 . Denote by MeV the variety of monoids where
𝑒𝑀𝑒𝑒 ∈ 𝑉 . Then LV is a subclass of MeV, and the following holds.

Theorem 4.25. If 𝑆 ∈ LV then 𝑆1 ∈ MeV.

Proof. Let 𝑆 be a semigroup in LV, that is, where 𝑒𝑆𝑒 ∈ 𝑉 for all idempotents 𝑒 of 𝑆.
If 1 ∈ 𝑆 then 𝑆 is a monoid and 𝑆1 = 𝑆, and thus by containment 𝑆1 ∈ 𝑀𝑒𝑉 . On the
other hand if 1 ∉ 𝑆, then 𝑒𝑥𝑒 ≠ 1 for any 𝑒 or 𝑥 in 𝑆, so 𝑒𝑀𝑒𝑒 ∈ 𝑉 for all nonidentity
𝑒. But if 𝑒𝑥𝑒 ≠ 1 for all 𝑒 and 𝑥, it follows that 𝑀1 = {1}. Then 1𝑀11 = {1} and
is necessarily in V. In sum, 𝑒𝑀𝑒𝑒 ∈ V for all idempotents 𝑒, including 1, and thus
𝑆1 ∈ MeV. ■

Corollary 4.25.1. MeV contains the Boolean closure of ⟦LV⟧T.

This containment is, in general, proper. Consider the language 𝐿 of Figure 4.3 on
page 47, wherein all words contain an 𝑎 nowhere followed by a 𝑏 . . . 𝑐 subsequence,
and suppose for simplicity that the alphabet is Σ = {𝑎, 𝑏, 𝑐}. This is L-trivial and
therefore 𝑀𝑒𝑒 = 𝑒. One can construct two words that have the same length-𝑘 suffixes
on every tier where one is in the language and the other is not. Consider the strings
𝑎𝑘𝑐𝑘𝑏𝑘 ∈ 𝐿 and 𝑎𝑘𝑏𝑐𝑘𝑏𝑘 ∉ 𝐿. On any tier containing 𝑏, the 𝑘-suffix is 𝑏𝑘 . On any
tier containing 𝑐 but not 𝑏, it is 𝑐𝑘 . On the tier containing only 𝑎, it is 𝑎𝑘 . And on the
empty tier, it is of course 𝜀. Of the eight possible tiers, four contain 𝑏 ({𝑏}, {𝑎, 𝑏},
{𝑏, 𝑐}, and {𝑎, 𝑏, 𝑐}), two contain 𝑐 but not 𝑏 ({𝑐} and {𝑎, 𝑐}), one is 𝑎 alone, and
the other is empty. We have covered all cases, and the two words have the same
𝑘-suffixes on both tiers. If the language were multiple-tier-based definite, the words
would have to be treated the same, but they are not.

63

For any monoid variety V, there is a local variety LV. This local variety extends
to a tier-based class ⟦LV⟧T. Then the multiple-tier-based LV class is the Boolean
closure of ⟦LV⟧T and is contained in MeV. Two of the higher classes have been
discussed in prior literature. There is the generalized locally testable class of
Brzozowski and Fich (1984), MeJI, generalizing both the locally testable class and
DA, and there is also a fragment of first order logic characterized by Krebs et al.
(2020), MeDA corresponding to fo2 [<, bet]. This is the fragment of first-order
logic with general precedence restricted to two variables with an additional binary
predicate per alphabetic symbol where 𝑎(𝑥, 𝑦) means “an 𝑎 appears in the range of
positions between 𝑥 and 𝑦”. The language 𝐵𝐵2 = (𝑎(𝑎𝑏)∗𝑏)+ discussed by Krebs
et al. (2020) is in H but not MeDA, demonstrating that the latter does not possess
the full power of star-free. And the language 𝑈2 from the same work, defined
as (Σ∗ − (Σ∗𝑎𝑐∗𝑎Σ∗)) ∪ (Σ∗ − (Σ∗𝑏𝑐∗𝑏Σ∗))𝑎𝑐∗𝑎Σ∗, is in MeDA but not MeJI,
separating them. A simplified variant of this language, 𝑈′2 continues to separate the
classes: 𝑈′2 = (Σ∗ − (Σ∗𝑏𝑐∗𝑏Σ∗𝑎𝑐∗𝑎Σ∗)) 𝑈′2 can be defined more simply as a ⟦LJ⟧T
language, forbidding on the {𝑎, 𝑏} tier the occurrence of a 𝑏𝑏 substring eventually
followed by an 𝑎𝑎 substring. Then 𝑈′2 ∈ MeJ but not MeJI. The equivalence of
these two definitions of 𝑈′2 has been verified with plebby, as has the fact that each
language under discussion in this chapter is a separator of classes as claimed. This
software will be discussed further in Chapter 9.

4.6 Conclusions
We have constructed from first principles a hierarchy of classes of formal languages.
This provides essentially a periodic table of elements for these classes. Various
phonotactic constraints are characterized with respect to this complete hierarchy
in Appendix A. Figure 4.16 shows the classes discussed in this chapter alongside
their common names, if any. The hierarchy is split into three branches, with the
base branch being a collection of monoid varieties on the far left. Recall their
equational descriptions from Table 4.1. This branch is cloned into a branch of
semigroup varieties wherein 𝑆 ∈ LV iff 𝑒𝑆𝑒 ∈ V for each idempotent 𝑒 of 𝑆.
These two branches subsume the propositional and higher levels of the traditional
piecewise-local subregular hierarchy explored in previous chapters. The relativized
extensions of classes introduced in Chapter 3 are not closed under the Boolean
operations and thus are not varieties. But these classes can be defined algebraically by
constructing a class ⟦LV⟧T containing all and only those languages whose projected
subsemigroups are LV.

This full hierarchy also incorporates classes that characterize various fragments
of formal logic that were not previously handled in a unified way. It is well known that
DA corresponds to fragments of various types of formal logic, and LDA and MeDA
are more powerful fragments still below full first-order. Notably missing from this

64

Table 4.2: A summary of algebraic classes and their characterizations.
V Name LV MeV

1 Trivial gd fo2 [<]
JI 1-lt lt glt

Acom ⟨1, 𝑡⟩-ltt ltt gltt
J pt · · ·
DA fo2 [<] fo2 [<,◁] fo2 [<, bet]

diagram are the strictly piecewise and (tier-based) strictly local classes. These classes
are not closed under complement, which means that they are not characterizable
from their syntactic monoids without additional information. However, if acceptance
parity is maintained then work of Fu et al. (2011) characterizes strictly piecewise
and De Luca and Restivo (1980) characterizes strictly local in a way that can be
generalized to account for tier-based strictly local. The ordered semigroups discussed
by Pin (1997) are useful in this regard. Exploring these is a task for future work,
especially (in light of the next chapter) how such a representation would interact
with characterization of transition semigroups of transducers rather than those of
acceptors.

This unified hierarchy is still far from complete. Adding constraints to any class
will produce a subclass; if the constraints are in the form of equations then a variety
can be strengthened into a subvariety. Conversely removing or weakening constraints
yields a superclass. Table 4.2 offers a quick reference to the algebraic properties that
characterize many of these classes. Omitted are L and R, as well as the classes below
L1. Each monoid variety V defines a class of languages, and two derived classes
are formed: languages whose semigroups are locally in V (which admit a tier-based
variant), and languages whose generated submonoids 𝑒𝑀𝑒𝑒 are in V (which do not
have a distinct tier-based variant).

Note that in Table 4.2 inclusion holds upward and leftward, and the rightmost
column begins where the leftmost ends. Figure 4.16 will continue to spiral upward
as the inclusions will continue to hold. It would be interesting to explore whether
there is a fixed point, whether the spiral ends. If so, where would it be?

65

1
Σ∗ or ∅

JI
1-lt

Acom
⟨1,𝑡⟩-ltt

J
piecewise testable

L R

DA
fo2 [<]

MeJI
generalized locally testable

MeAcom

MeJ

MeL MeR

MeDA
fo2 [<,bet]

H
star-free

F
(co)finite

D
definite

K
rev. def.

L1
gen. def.

LJI
locally testable

LAcom
locally threshold testable

LJ

LL LR

LDA
fo2 [<,◁]

⟦F⟧T
tier (co)finite

⟦D⟧T
tier def.

⟦K⟧T
tier rev. def.

⟦L1⟧T
tier gen. def.

⟦LJI⟧T
tier locally testable

⟦LAcom⟧T
tier loc. thresh. testable

⟦LJ⟧T

⟦LL⟧T ⟦LR⟧T

⟦LDA⟧T

Figure 4.16: The full algebraic hierarchy. It is essentially a crystal formed by copies
of the highlighted region, but the lower levels are degenerate. Some lines dotted for
readability.

66

5: CLASSIFYING FUNCTIONS

The previous chapter describes a broad hierarchy of subregular classes of formal
languages. Further, it provides specific ways in which any given class may be
generalized to maintain desirable closure properties, while noting that in general any
addition of constraints results in a subclass while any relaxation yields a superclass.
The methods described in that chapter generalize quite easily to string-to-string
functions. In this chapter, this generalization is explored, first in the context of one-
directional deterministic finite-state transducers, then further for the more powerful
class of not-necessarily deterministic two-way machines. This provides a framework
for the classification of phonological transformations, either patterns as a whole or
individual functions that can compose to form the larger pattern.

One reason for factoring patterns is to obtain some sort of compositional
understanding of their complexity. If a formal language is built as a conjunction of
two or more constraints, then the complexity of the pattern as a whole is no higher
than a class that contains the intersection closures of each individual constraint’s
class. Moreover if each individual constraint is learnable, each acceptor could be
stored separately and a final judgment could be taken by deciding whether all of
them accept a given input. As will be shown later in this chapter, care must be
taken when trying to deal with functions in the same way. Nonrelativized classes at
or above the propositional level of the piecewise-local subregular hierarchy shown
in Figure 3.1 are closed under intersection, because, as discussed in the previous
chapter, these classes are defined by varieties and this operation is a direct product.
Function composition is not such an operation, and therefore does not necessarily
preserve class membership.

This chapter begins with a review of algebraic concepts and a discussion of what
are commonly known as subsequential string-to-string functions (Schützenberger,
1977). These functions cover a large part of the set of phonologically relevant
processes (Lamont, 2018), and are characterized by a direct generalization of the
methods used for classifying string acceptors (c.f. Vaysse, 1986). In order to explore
the range of attested patterns, several processes that appear in natural language are
demonstrated and classified. Not all relevant processes are subsequential, however,
and another method is required to appropriately categorize the others (Carton and
Dartois, 2015). A more general method follows, allowing one to classify any
function definable by a two-way finite-state transducer. This generality comes at
a price: lacking a canonical form, a machine may witness that a process is of at
most a given complexity, but there is no clear way to tell that this is a minimum.

67

One-way machines, deterministic or otherwise, correspond to the functions that can
be computed by an order-preserving first-order transduction (Lhote, 2018), while
processes represented by two-way machines are not necessarily order-preserving.
The least upper bound of phonological patterns explored in this chapter is tier-based
locally testable, ⟦LJI⟧T in the hierarchy of Figure 4.16.

5.1 Structures and Machines
Recall from the preceding chapter and from Chapter 2 that a semigroup is a set
alongside an associative operation under which it is closed, that a monoid is a
semigroup with identity, and that the M∼ equivalence relation is compatible with
concatenation and thus induces a quotient monoid Σ∗/M∼. This section reviews core
concepts regarding acceptors and applies them to transducers.

5.1.1 String Acceptors
Recall the formal definition of a finite-state acceptor. A deterministic finite-state
acceptor is described by a five-tuple ⟨Σ, 𝑄, 𝛿, 𝑞0, 𝐹⟩ where Σ is a finite alphabet, 𝑄
a finite set of states, 𝛿 : Σ ×𝑄 → 𝑄 a transition function, 𝑞0 an initial state, and 𝐹 a
set of accepting states. A word is read one symbol at a time. If computation is in
state 𝑞, the next symbol is 𝜎, and 𝛿(𝜎, 𝑞) = 𝑟 , then after reading that 𝜎 computation
will be in state 𝑟. Given the equivalence classes under N∼ or M∼, we can construct
such an acceptor. Σ is the alphabet over which words were generated, 𝑄 is the set of
equivalence classes, 𝛿(𝜎, 𝑞) is the equivalence class of 𝑞𝜎, 𝑞0 is whichever class
contains the empty sequence, and 𝐹 is the set of equivalence classes which contain
accepted words. Hopcroft and Ullman (1979) discuss a dynamic programming
algorithm to reduce an arbitrary deterministic acceptor to that associated with its
Nerode equivalence relation. Another simple method, which will be described later,
transforms that canonical form into the acceptor generated by the Myhill equivalence
relation.

Figure 5.1 shows the acceptors induced by N∼ and M∼ for the example language over
{𝑎, 𝑏, 𝑐} in which no word contains an 𝑎𝑏 substring. If 𝑎 represents the class of nasals,
𝑏 the class of voiceless stops, and 𝑐 all other segments, then this would be precisely
the ∗NT constraint, a local phonotactic constraint forbidding the occurrence of a
voiceless stop immediately following a nasal. The acceptor induced by the syntactic
monoid of 𝐿 is a right Cayley graph of that monoid (see Zelinka, 1981) augmented
with information about whether the elements represent accepted or rejected words.

5.1.2 String-to-String Transducers
Raney (1958) discuss one method of generalizing these acceptors into functions (see
also Oncina et al., 1993). A sequential transducer is a five-tuple ⟨Σ,Δ, 𝑄, 𝛿, 𝑞0⟩,
where Σ is the alphabet of input strings, Δ that of output strings, 𝑄 a finite set of states,

68

𝑏, 𝑐

𝑎

𝑎

𝑏
𝑐

𝑎, 𝑏, 𝑐

𝜀

𝑎

𝑐

𝑏

𝑎𝑏

𝑏𝑎

𝑎

𝑏

𝑐

𝑎

𝑏

𝑐

𝑎

𝑏, 𝑐

𝑎

𝑏, 𝑐

𝑎

𝑏

𝑐

𝑎, 𝑏, 𝑐

Figure 5.1: The acceptors induced by Nerode (above) and Myhill (below) equivalence
for a string language forbidding 𝑎𝑏 substrings.

𝛿 : Σ ×𝑄 → Δ∗ ×𝑄 a transition function, and 𝑞0 an initial state. This behaves like
an acceptor, where all strings are accepted (in the domain of the function) and every
edge traversed appends to an accumulated output. Sequential functions are total. A
subsequential transducer generalizes this notion by associating outputs with states
(Schützenberger, 1977); if an input word ends in state 𝑞, the output word receives the
suffix associated with state 𝑞. The function 𝜎 mapping states to suffixes is added
as a sixth element: ⟨Σ,Δ, 𝑄, 𝛿, 𝑞0, 𝜎⟩. The names and order of these components
here are not the same as those used in the original work, but seem to have become
commonly used in later work. Adding another element, a prefix applied to all output
strings, changes nothing because it could simply be added to each edge out of 𝑞0 and
to the output associated with that state. So in this work, this universal prefix 𝜌 will
be assumed: ⟨Σ,Δ, 𝑄, 𝛿, 𝑞0, 𝜌, 𝜎⟩. This change leaves most definitions unaffected.

Bruyère and Reutenauer (1999) argue that the subsequential notion is more
deserving of the status as the basic object, and refer to such functions as simply
sequential, a practice followed by Lombardy and Sakarovitch (2006), among others.
A subsequential machine is equivalent to a sequential machine over a larger alphabet
that includes explicit boundary symbols, and a well-formed version of the latter can
be rewritten as the former. Given this bĳection, the remainder of this work will
follow this recent notational trend.

The property of being sequential depends on the direction in which the input
is read. An iterative regressive harmony pattern cannot be described by a left-to-
right sequential function because there is an unbounded delay between seeing a
harmonizing symbol and finding the trigger that determines its surface form (Heinz

69

and Lai, 2013; Mohri, 1997). However, this process can be expressed as a right-to-left
sequential function. One might think of this as reversing the output obtained by
applying some left-to-right transducer to the reversal of the input. Alternatively, one
could say the machine reads the string from right to left and concatenates in the same
direction on the output. A left-to-right class will be denoted here in the form→SQ
and a right-to-left class in the form←SQ, where the arrow indicates the direction
and SQ refers to the sequential property.

A transducer is onward if its output is produced as early as possible (Oncina
et al., 1993): for all states 𝑝, lcp({𝑦 ∈ Δ∗: 𝛿(𝑎, 𝑝) = ⟨𝑦, 𝑞⟩} ∪ {𝜎(𝑝)}) = 𝜀. The
Nerode equivalence relation extends naturally to functions by means of the tails of
input strings. The set of tails of 𝑥 in a function 𝑓 , 𝑇 𝑓 (𝑥) is defined as follows:

𝑇 𝑓 (𝑥) = {⟨𝑦, 𝑣⟩: 𝑓 (𝑥𝑦) = lcp(𝑓 (𝑥Σ∗))𝑣}.

Two strings are related iff they share the same set of tails. We will denote this
relation by N∼ to emphasize its connection to the Nerode equivalence for string sets.
A transducer in canonical form is onward and has one state per equivalence class
under N∼. Naturally there is a two-sided extension of this that generalizes the Myhill
equivalence relation. The contexts of 𝑥 in 𝑓 are as follows:

𝐶 𝑓 (𝑥) = {⟨𝑤, 𝑦, 𝑣⟩: 𝑓 (𝑤𝑥𝑦) = lcp(𝑓 (𝑤𝑥Σ∗))𝑣}.

The M∼ relation for functions is defined so that strings are related iff they have the
same contexts; this is the same as the syntactic congruence described by Filiot et al.
(2016). When restricted to 𝑤 = 𝜀, the resulting set is essentially equivalent to the
tails, so the M∼ relation derived from 𝐶 forms, as with string sets, a refinement of the
partition induced by N∼.

5.1.3 Constructing Monoids from Canonical Machines
The canonical form of a machine has states corresponding to the N∼ relation. The M∼
relation gives a notion of the influence of prefixes. So, to construct a machine over
M∼ from a canonical machine, i.e. to construct a right Cayley graph of the monoid
associated with the structure of the machine, we look to see where each input symbol
takes each of the states. In other words, what function over the states does each
symbol act as? This is the transition congruence of the machine (Filiot et al., 2016).
McNaughton and Papert (1971) use this same construction.

Consider the automata of Figure 5.1. Associate a number which each state of
the automaton induced by N∼: ⟦𝜀⟧ is 1, ⟦𝑎⟧ is 2, and ⟦𝑎𝑏⟧ is 3. The numbering
is arbitrary. Denote by ⟨𝑥, 𝑦, 𝑧⟩ the function which maps 1 to 𝑥, 2 to 𝑦, and 3 to
𝑧. The identity function always exists and corresponds to 𝜀: ⟨1, 2, 3⟩. From there,

70

Table 5.1: The Cayley table for the syntactic semigroups in Figure 5.1 (left) and
Figure 5.2 (right).

a b c ab ba
a a ab c ab ab
b ba b b ab ba
c a c c ab a
ab ab ab ab ab ab
ba ba ab b ab ab

T V D VT
T D V D VT
V VT V D VT
D D V D VT

VT D V D VT

𝑎, 𝑏, and 𝑐 act as ⟨2, 2, 3⟩, ⟨1, 3, 3⟩ and ⟨1, 1, 3⟩, respectively. These mappings are
enough to complete the structure. Consider 𝑎𝑏: this first applies the 𝑎 mapping,
then to that result applies the 𝑏 mapping, so ⟨1, 2, 3⟩ maps first to ⟨2, 2, 3⟩ by 𝑎 then
to ⟨3, 3, 3⟩ by 𝑏 (because both 2 and 3 map to 3). By the same process, we find
that 𝑎𝑎 = 𝑐𝑎 = 𝑎, 𝑎𝑐 = 𝑐𝑏 = 𝑐𝑐 = 𝑐, 𝑏𝑏 = 𝑏𝑐 = 𝑏 and 𝑏𝑎 is a new state ⟨2, 3, 3⟩.
Continuing this process with the 𝑎𝑏 = ⟨3, 3, 3⟩ and 𝑏𝑎 = ⟨2, 3, 3⟩ states, we find
𝑎𝑏 · 𝑎 = 𝑎𝑏 · 𝑏 = 𝑎𝑏 · 𝑐 = 𝑏𝑎 · 𝑏 = 𝑎𝑏, 𝑏𝑎 · 𝑎 = 𝑏𝑎 and finally 𝑏𝑎 · 𝑐 = 𝑏. This
iteration generated no new states, so the process is complete. And this does indeed
conform to the structure shown in Figure 5.1. The Cayley graph corresponding to
the syntactic semigroup in Figure 5.1 is shown on the left in Table 5.1.

Now consider the transducer of Figure 5.2. This transducer is a representation
of intervocalic voicing, a phonological process where voiceless obstruents become
voiced between vowels. As a phonological rule this is T→D/V V. For example,
this transducer maps the string TVTVD to TVDVD.

The transducer at the top of Figure 5.2 is in canonical form, where each state
represents one N∼ class. State 2 is all those strings that end in V, state 3 is the strings
ending in VT, and state 1 represents the others. The five mapping functions are
the identity function ⟨1, 2, 3⟩ corresponding to 𝜀, ⟨1, 1, 1⟩, ⟨1, 3, 1⟩, and ⟨2, 2, 2⟩
corresponding to D, T, and V, respectively, and finally ⟨3, 3, 3⟩ for VT. One can
verify that for any pair of classes there is a context which distinguishes words in
one from words in the other, and that no context distinguishes words within a class.
For example, 𝜀 and T are distinguished by a V V context, as for 𝜀 that following
V contributes just V while for T that following V contributes a DV. Technically,
⟨V,V,V⟩ ∈ 𝐶 (𝜀) while ⟨V,V,DV⟩ ∈ 𝐶 (T), but by determinism the triples are
unique in their first two components. Then 𝜀 and D are distinguished by a VT 𝜀

context, as the 𝜀 contributes T to the former and 𝜀 to the latter. That no context
distinguishes strings within a class is guaranteed by the construction. The Cayley
graph corresponding to the syntactic monoid in Figure 5.2 is shown on the right in
Table 5.1.

While output information has been discarded in this construction of the monoid,

71

:T

T:T,D:D
V:V

V:V

D:D

T:𝜀

T:TT,D:TD

V:DV

𝜀 T

V

D

VTT

V

D

V

D,T

V

T

D

D,T

V

D,T

V

Figure 5.2: Transducer and monoid for “T becomes D directly between two V”.

it is not unrecoverable, despite appearances. Outputs may be compatibly assigned to
the states and edges and the result used as a nonminimal transducer. However, the
structure is identical to that of the string language in which all words must end in
“VT”. This notion of structural equivalence gives rise to a deep theory of function
complexity.

5.1.4 Definite Algebraic Structure
Recall that a string language 𝐿 is definite if can be defined by a finite set 𝑋 of
permitted suffixes: 𝐿 = {𝑤𝑣 : 𝑤 ∈ Σ∗, 𝑣 ∈ 𝑋} (Perles et al., 1963). The class of
definite languages is denoted D. Because 𝑋 is a finite set there is some longest string
in 𝑋 whose length is 𝑛, and thus whether a string belongs to 𝐿 can be decided by
examining the last 𝑛 symbols in the string. Such languages are called 𝑛-definite. This
same class of languages has also been called local (Sakarovitch, 2009), derived from
earlier use of the French fonctions 𝑝-locales (Berstel, 1982; Vaysse, 1986). More
generally, as the canonical acceptor for a definite language processes strings, the
states correspond to strings in Σ𝑛 that represent the most recent history. In this sense,
the state space of definite languages is Markovian in the sense explained by Jurafsky
and Martin (2009).

The definite languages were one of the early classes of formal languages to be
given an algebraic characterization (Brzozowski and Simon, 1973; Brzozowski and
Fich, 1984). Recall that D corresponds to the identity ⟦𝑥𝛼𝜔 = 𝛼𝜔⟧, often written
𝑆𝑒 = 𝑒.

72

The string language which forbids 𝑎𝑏 substrings is not definite. This follows
from the algebraic characterization and from the Cayley table for this language in
Table 5.1. While 𝑏 is an idempotent (since 𝑏 · 𝑏 = 𝑏), 𝑎 · 𝑏 = 𝑎𝑏 ≠ 𝑏. Thus 𝑆𝑒 ≠ 𝑒.

On the other hand, when we consider the idempotents 𝑒 of the intervocalic voicing
function (𝑉 , 𝐷, and 𝑉𝑇), it is the case that 𝑆𝑒 = 𝑒. This can easily be verified by
inspection of their respective columns in the Cayley table in Table 5.1. In other
words, the most recently read symbols determine the state of a minimal sequential
transducer of a definite function as it processes some input string.

Recall that D is a pseudovariety of semigroups and thus closed under the taking
of subsemigroups, quotients and finite direct products, and consequently the class
is closed under finite applications of Boolean operations. The definite variety has
played a key role in the development of an algebraic theory of recognizable languages
(Straubing, 1985).

5.2 Input Strictly Local Functions
Chandlee et al. (2014) define input strictly local transducers by a restriction on the
tails, that for some 𝑘 strings with the same 𝑘-suffix have the same tails, and this
restriction induces a canonical transducer structure. A function is input strictly local
iff there is some natural number 𝑘 such that the function is definable by a sequential
transducer whose states are labeled by Σ<𝑘 , whose initial state is that labeled by 𝜀,
and whose edges are of the form 𝛿(𝑎, 𝑞) = ⟨𝑤, Suff𝑘−1(𝑞𝑎)⟩. The suffix function is
defined as expected:

Suff𝑛 (𝑤) =

𝜀 if 𝑛 ⩽ 0,
𝑤 if |𝑤 | ⩽ 𝑛,
𝑣 if 𝑤 = 𝑢𝑣 for 𝑢 ∈ Σ∗, 𝑣 ∈ Σ𝑛.

Conveniently, this canonical form is already a monoid. The operation 𝑢 · 𝑣 =

Suff𝑘−1(𝑢 · 𝑣) is associative, and 𝜀 is the identity. Let 𝑓 be a function,
−→
𝑆 and

←−
𝑆 be

the syntactic semigroups of the left-to-right and right-to-left transducers associated
with 𝑓 , respectively, and 𝑒 range over all idempotents of the appropriate semigroup.

Theorem 5.1. The following are equivalent:

• 𝑓 is a total input strictly local function

• 𝑓 is→ D:
−→
𝑆 𝑒 = 𝑒

• 𝑓 is← D:
←−
𝑆 𝑒 = 𝑒

Proof. The nonidentity idempotent elements of this monoid are Σ𝑘−1, as when
𝑥 ∈ Σ𝑘−1 we have 𝑥 = Suff𝑘−1(𝑥) = Suff𝑘−1(𝑥𝑥), and when 𝑥 ∈ Σ<𝑘−1 we instead

73

have 𝑥 ≠ Suff𝑘−1(𝑥𝑥). But if 𝑥 ∈ Σ𝑘−1 we have that Suff𝑘−1(𝑢𝑥) = 𝑥 for all 𝑢 ∈ Σ∗,
so for all elements 𝑠 of the monoid it holds that 𝑠 · 𝑥 = 𝑥. In other words, 𝑆𝑒 = 𝑒 for
all idempotent elements 𝑒 in the syntactic semigroup (which excludes the identity).
This is exactly the semigroup property that characterizes the class of definite string
languages, which are defined by a set of permitted suffixes (Brzozowski and Simon,
1973; Brzozowski and Fich, 1984).

The directionality statement follows from the fact that input strictly local functions
are not directional (Chandlee and Heinz, 2018). ■

This makes sense, as the canonical form of an input strictly local transducer is
exactly the same as the canonical form of the acceptor of a definite string language
(Perles et al., 1963). Both are defined by the next state being entirely predicted by the
most recent symbols encountered, with no long-distance effects at all. Indeed, exactly
this class of functions has been discussed as the class of definite functions decades
before Chandlee et al. (2014) introduced them as input strictly local functions to the
discourse of linguists (Krohn et al., 1967; Stiffler, 1973).

Strictly local string languages in general follow the same structure but additionally
allow some of the states to become rejecting sinks instead of transitioning to the
otherwise expected states. The result of these changes does not necessarily retain the
algebraic structure, but then a semigroup can be regenerated by the usual method.
Some long-distance behavior is enabled by this ability to account for whether a factor
in some fixed set has ever occurred.

We invoke this characterization of input strictly local functions as definite
structures to provide an effective decision procedure for determining whether an
arbitrary finite-state transducer represents an input strictly local map. First, it is
converted (if possible) to a canonical sequential form by the algorithm of Mohri
(1997). If this conversion is impossible, the map is certainly not in this class, as
it is not even sequential. If on the other hand it is, then the syntactic semigroup
is constructible by the algorithms shown in section 5.1 (McNaughton and Papert,
1971). After extracting the idempotents, one needs only to check that the column in
the Cayley table of the semigroup labeled by each idempotent 𝑒 consists of only 𝑒.
Recall that the identity is in the semigroup iff it is reachable by a nonempty string.

It should be noted that being able to define a process as a composition of input
strictly local processes does not guarantee that the process as a whole has the
same property, as composition does not preserve structure or variety membership.
Consider two isl functions, the first describing vowel-span truncation, V→∅/V ,
and the second describing simultaneous application of T→D/TV and D→T/DV ,
essentially harmonizing voicing over a single vowel. The composition of these,
applying the second to the result of the first, yields a system, shown in Figure 5.3
that does not satisfy the algebraic property of definiteness. V is idempotent, so

74

𝜀 V T

D

DV

TV

V

D

T
V:𝜀

T
D

T

V
D

D V

T

V:𝜀

T

D:T

V:𝜀
D

T:D

Figure 5.3: A non-isl function composed from two isl functions.

any element followed by V should yield V, but the element DV yields DVV = DV
instead. As the class of definite functions is not closed under composition, defined
by membership in the variety D, this operation cannot preserve algebraic structure or
variety membership.

5.3 Output Strictly Local Functions
For the input 𝑘-strictly local functions, state is determined by the most recent 𝑘 − 1
symbols read from the input. A different generalization to functions of the strictly
local languages is the output 𝑘-strictly local functions, where state is determined by
the most recent 𝑘 − 1 symbols of the output (Chandlee, 2014; Chandlee et al., 2015).
I show here by construction that this class is not characterized by any property of
these syntactic semigroups.

Let us first consider some basic exemplars of the class. One canonical example is
an iterative spreading process, such as that shown in Figure 5.4: upon reading a nasal
(N or Ṽ), an immediately subsequent span of vowels (V) becomes nasalized (Ṽ).
This is a progressive spreading pattern if the input is read left to right, or a regressive
iterative spreading if it is read right to left. What are the algebraic properties of this
pattern?

Following the approach of the previous chapter, one can classify this pattern
in many ways. Recall the hierarchy shown in Figure 4.16. We can first show that
this pattern is tier-based definite (a subclass of tier-based generalized definite, tgd).
First, notice that V acts as an identity in the syntactic monoid, which means that,
perhaps surprisingly, this symbol is not on the tier of symbols salient for this pattern.
Upon removal of this symbol, 𝜀 is no longer included in the corresponding semigroup,
and the remaining elements are N and T. The Cayley table for this restriction is
shown in Table 5.2. All elements are idempotent, and both columns consist entirely

75

T:T,V:V

N:N,Ṽ:Ṽ
N:N,V:Ṽ,Ṽ:Ṽ

T:T
𝜀

N

TT

N,Ṽ

V T

N,V,Ṽ

T,V

N,Ṽ

Figure 5.4: Iterative spreading of nasality: an output strictly local function. Minimal
transducer at left, syntactic monoid at right.

Table 5.2: A Cayley table for nasal spreading, after tier restriction.
N T

N N T
T N T

of a single element. In other words, this restricted semigroup satisfies the algebraic
property of definiteness. The spreading pattern is tier-based definite, either→ ⟦D⟧T
for a progressive spreading, or← ⟦D⟧T for a regressive spreading.

Let us consider theJ-classes of the monoid for this spreading pattern, in order
to test for membership in pt. Recall from the previous chapter that two elements 𝑎
and 𝑏 areJ-equivalent iff they have the same two-sided ideals, 𝑀𝑎𝑀 = 𝑀𝑏𝑀 . The
two-sided ideal of 𝜀 is {𝜀,N,T}, or in other words 𝑀 itself. This always holds for
the identity. That of N is {N,T}, as is that of T. Because these two elements have
the same two-sided ideal, they areJ-equivalent. But since they are not themselves
equal, it follows that this pattern is not pt. In fact, because 𝜀 is an idempotent in 𝑆,
it follows that this pattern is not even locallyJ-trivial; in other words, this type of
spreading pattern looks quite complex from both local and piecewise branches of the
subregular hierarchy, and only relativized adjacency shows its simplicity.

As an aside, the previous section notes that → D and ← D are one and the
same. This spreading pattern demonstrates that the same does not hold in general:
it cannot be recognized by any sequential transducer that reads in the opposite
direction. Figure 5.5 shows a small nondeterministic machine for a reversed reading.
Aside from the initial state, there is a nasalizing state and a nonnasalizing state.
The nasalizing state requires a nasal to immediately follow (in order to license the
feature), while the nonnasalizing state forbids an immediately following nasal (as
such a segment should spread). It can be verified that this transducer cannot be
determinized: no matter how long the span of V, it must be the case that V𝑛N and
V𝑛T map the entire span differently. For a deterministic machine, each V must output
𝜀, and a span of the correct length must be emitted before the following consonant.

76

T:T,N:N,Ṽ:Ṽ
V:V

V:Ṽ

V:V

T:T

V:Ṽ

N:N,Ṽ:Ṽ

Figure 5.5: Nondeterministic transducer for oppositeward nasal spreading.

b:0
a:1

b:1

a:0
𝜀 𝑎

b:0
a:1

b:1

a:0

Figure 5.6: Periodic 2-osl function and its monoid.

In order to guarantee this, there must be one state per possible length, and because
this length is unbounded, the number of states is not finite. Iterative spreading in
the same direction as the string is read is tier-based definite, but spreading in the
opposite direction is not even sequential.

Let us now consider another output strictly local function, specifically the one
depicted in Figure 5.6. This one lacks phonological motivation, but provides evidence
that osl in general can span a wide range of complexity classes from the algebraic
perspective. This function outputs streams of zero and one, beginning with zero and
swapping upon reading an “a”. This type of function is useful in computer science,
essentially implementing a conversion from a bit stream to nrzi coding (Phelps,
1956; Clapper, 1961). Its syntactic semigroup is however not even aperiodic; 𝑎
generates a nontrivial group consisting of the identity (𝜀) and the self-inverse 𝑎.
Algebraically, this function is properly sequential, nothing lower.

Indeed, for any finite semigroup 𝑆, one can construct a 𝑘-osl function whose
transition semigroup is precisely 𝑆. For each element 𝑥 of 𝑆1, construct a unique
state and a unique string of length 𝑘; let 𝑞(𝑥) denote the state corresponding to x, and
𝑤(𝑥) its corresponding string. These strings will be possible outputs for transitions.
Further, select a subset 𝐺 ⊆ 𝑆 such that 𝐺+ = 𝑆, and assign for each element 𝑔 in 𝐺

a unique symbol 𝜎(𝑔). These symbols make up the input alphabet. For all elements
𝑥 of 𝑆1 and 𝑦 of 𝐺, construct an edge from 𝑞(𝑥) to 𝑞(𝑥𝑦) labeled 𝜎(𝑦) : 𝑤(𝑥𝑦).

For instance consider the syntactic semigroup shown by Cayley table as Table 5.3.
Let 𝐺 = {𝑎, 𝑏}, let 𝜎 map 𝑎 to “a” and 𝑏 to “b”, and let 𝑤 map 𝑎 to “x”, 𝑏 to “y”,
and 𝑐 to “z”. The transducer constructed by this method is shown in Figure 5.7. The

77

Table 5.3: An arbitrary syntactic semigroup.
𝑎 𝑏 𝑐

𝑎 𝑎 𝑐 𝑐

𝑏 𝑐 𝑏 𝑐

𝑐 𝑐 𝑐 𝑐

a:x

b:y

a:x

b:z

b:y

a:z

a:z,b:z

Figure 5.7: A transducer derived from Table 5.3.

result is a 2-osl function, and in fact this holds in general: the result is a (𝑛+1)-osl
function where 𝑛 is the length of the longest string in the range of 𝑤.

5.4 Harmony: Not Strictly Local
Simultaneous application of a phonological rule A→B/C D, where CAD represents
a finite set, is represented by a definite function, an input strictly local function.
Iterative spreading is output strictly local, and specifically as shown in the previous
section, it is tier-based definite. This directional application is in the case of spreading
more complex than a simultaneous application, but not by much. In the case of
string acceptors, a tier-based strictly local language can be learned using nothing
beyond a standard strictly local learner (Lambert, 2021), and a similar generalization
may be applicable to functions. Some phonologically relevant functions cannot
be represented as either. For example, consider the sibilant harmony pattern of
Samala (Applegate, 1972), a Chumashan language from along the Santa Ynez
river in California in which “s” and “ʃ” may not appear in the same word. A
M∼-minimal transducer, isomorphic to the transition monoid, for this function is
shown in Figure 5.8, alongside the strictly piecewise minimal acceptor for its output
language.

One might wish to say that this function, like the corresponding acceptor, is
strictly piecewise. This function is output strictly piecewise in sense of Burness and
McMullin (2020), but as we have shown, output-based classes are not necessarily
well-behaved. We depart here from their notion of a strictly piecewise function and

78

a

s

ʃ

a,s

a,ʃ

a

s

ʃ

a,s,ʃ:s

a,s:ʃ,ʃ

Figure 5.8: Samala sibilant harmony: N∼-minimal trimmed acceptor (left) and M∼-
minimal transducer (right). Outputs omitted when identical to inputs.

instead consider the algebraic classes of the previous chapter. Strictly piecewise is a
subclass of piecewise testable, so, rather than attempt to define a strictly piecewise
function, let us consider the J-classes of the transition monoid. Let 1, s, and ʃ
represent the equivalence classes of 𝜀, s, and ʃ, respectively. Then the two-sided
ideal of 1 is {1, s, ʃ}, that of s is {s, ʃ}, and that of ʃ is also {s, ʃ}. The function is
not even piecewise testable in this sense, as two unequal elements have the same
two-sided ideal. What is it then?

Notice that there are nonsalient symbols, namely “a”. Restricting to the tier of
salient symbols, the semigroup 𝑆 contains two elements, s and ʃ. Each is idempotent,
and each is a left-zero: s𝑆 = s and ʃ𝑆 = ʃ. This is the algebraic property of reverse
definiteness. In other words, this kind of harmony across transparent segments is
tier-based reverse definite, where the output form is determined by the first 𝑘 salient
symbols.

Neither the most recent input nor the most recent output can determine state, as an
unbounded span of input “a” results in the same span of output “a”. But this function
is still quite simple, residing in a subclass of tier-based strictly local. In fact, the
acceptor is in tsl as well. In general, unblocked long-distance harmony is tier-based
reverse-definite, as the first instance of the relevant type of segment determines
the output, and iterative spreading is tier-based definite. Whether the process
is progressive or regressive is determined by the directionality of the transducer.
Spreading can be thought of as essentially a blocked form of asymmetric harmony.

So next we consider blockers in general. This does not cause the acceptor to
escape tsl , but observe in Figure 5.9 the increase in complexity one creates by
adding a blocking symbol “k” to the alphabet. Every element is idempotent, so
the complexity can be no higher than fo2 [<] as described in the previous chapter.
However, even the highest class that does not contain this on the tier-based branch,
tier-based locallyJ-trivial, is insufficient to describe this function. To show this,
first we restrict to the salient symbols, removing “a” and leaving a five-element
semigroup, where again all elements are idempotent. The local subsemigroups are

79

a,k

s

ʃ

a,s
k

a,ʃ
k

𝜀

s

ʃ

k

ks

kʃ

a

s

ʃ

k

a,s,ʃ:s

k

a,s:ʃ,ʃ

k

a,k s

ʃ

a,s,ʃ:s

k

a,s:ʃ,ʃ

k

Figure 5.9: A variant of Samala sibilant harmony, adding blockers: N∼-minimal
trimmed acceptor (left) and M∼-minimal transducer (right).

Table 5.4: Local subsemigroups from harmony with blockers.
𝑒 𝑒𝑆𝑒

k {k}
s {s, ks, kʃ}
ʃ {ʃ, ks, kʃ}

ks {ks}
kʃ {kʃ}

listed in Table 5.4. Most of them are trivial; they cannot serve as counterexamples.
But the local subsemigroup generated by “s” will do nicely. It has three elements: s,
ks, and kʃ. The identity is “s”, so its two-sided ideal is naturally the entire set. The
two-sided ideal of both “ks” and “kʃ” is the set {ks, kʃ}. This suffices to establish
that the local subsemigroup is notJ-trivial, that the system as a whole is not even
tier-based locallyJ-trivial. In other words, the lowest complexity class in Figure 4.16
that contains this function is that denoted by fo2 [<]. One can verify also that the
tier-based locally L-trivial class, above tlp but incomparable with fo2 [<], does
contain this function: in no local subsemigroup do two distinct elements share the
same left ideal. This is a relativized variant of the local extension of a generalization
of the definite structure, not simple at all.

This sort of blocking pattern is essentially a reset. Seeing the opaque segment
places the computation back into its initial state, where the next harmonizing segment
dictates the pattern. However, this is not the only possible kind of blocking process.
Rather than a reset, we may encounter an override, such as the two functions shown in
M∼-minimal form in Figure 5.10. In both cases, the mid vowels “e” and “o” harmonize.
An “ɑ” overrides the harmony to the back (“o”) pattern, and an “æ” overrides to the
front (“e”) pattern. Consonants (“C”) are of course transparent to this process.

80

𝜀

e

o

æ

ɑ

C

e

o

æ
ɑ

C,e,o:e æ

ɑ

C,e:o,o

æ

ɑ

C,e,o:e,æ

ɑ

C,e:o,o,ɑ

æ 𝜀

e

o

ɑC
e

o
ɑ

C,e,o:e

ɑ

C,e:o,o

ɑ
C,e:o,o,ɑ

Figure 5.10: A symmetric (left) and an asymmetric (right) override of harmony.

One can verify that the symmetric pattern has exactly the same complexity as the
process with a full reset: it is fo2 [<] or tier-based locally L-trivial. The asymmetric
process, however, is simpler. It is still fo2 [<] on one branch, but more tractable
with relativized adjacency. Consonants are not salient, and after stripping them away
the identity element is no longer in its semigroup; the remaining elements are “e”,
“o”, and “ɑ”. Their local subsemigroups are {e, ɑ}, {o, ɑ}, and {ɑ}, respectively,
and since each is a semilattice, the process as a whole is merely tier-based locally
testable.

5.5 Ambiguous and Two-Way Transducers
The classification algorithms of the preceding sections are built upon the same
mechanism as for acceptors. But they work only on sequential machines, which
maintain a property of order-preservation (Bojańczyk, 2014; Filiot, 2015). Carton
and Dartois (2015) provide a more general mechanism for constructing semigroups
that describe functions, which applies equally well to nondeterministic and two-way
machines, generalized from the analysis of two-way acceptors by Pécuchet (1985).
Their main result is that first-order definable graph transductions in the sense of
Courcelle (1994) correspond to two-way transducers with aperiodic semigroups,
generalizing the correspondence between first-order definable languages and aperiodic
semigroups. This method of constructing transition monoids is slightly more difficult
than that used to describe sequential functions. Worse, two-way machines in general
are plagued by a lack of a known canonical form, so one can only show that a
class is sufficient to describe a function; necessity is unprovable unless such a
form can be found. This section serves only to introduce the methodology with
respect to two phonologically relevant functions that cannot be represented by a
sequential transducer: high-tone plateauing (Jardine, 2016) and Tutrugbu atr-
harmony (McCollum et al., 2020). We begin with high-tone plateauing. This process

81

1

2

3

L

H

H

L:H,H

H

L

Figure 5.11: High-tone plateauing as a one-way nondeterministic machine.

𝜀 H

L

H

H,L

Figure 5.12: Transition monoid for the one-way high-tone plateauing.

transforms a low tone into a high tone iff there is a high tone somewhere on either
side of it. Figure 5.11 depicts a nondeterministic one-way transducer for precisely
this function.

Essentially the contexts of a string as defined in section 5.1.2 could be thought of
as state-pairs in the canonical transducer of the function, where the first component
is the state from which reading begins and the other component is the state in which
the computation concludes. This is generalized for the case of two-way machines
by collecting four variants of these contexts: one can begin at either the leftmost
or rightmost character of the string, and one can end by exiting the left side or
the right side. These are referred to by Carton and Dartois (2015) as behaviors
and are denoted bhℓℓ, bhℓ𝑟 , bh𝑟ℓ, and bh𝑟𝑟 , for left-to-left, left-to-right, right-to-left,
and right-to-right behaviors, respectively. For a left-to-right one-way machine,
the behaviors that describe exiting the left edge will always be the empty set, and
similarly for a right-to-left one-way machine, those describing exiting the right edge
will be the empty set. The four tuple bh(𝑤) = ⟨bhℓℓ (𝑤), bhℓ𝑟 (𝑤), bh𝑟ℓ (𝑤), bh𝑟𝑟 (𝑤)⟩
describes the overall behaviors of a string 𝑤, and a semigroup can be formed by
taking a quotient of Σ+ over the relation wherein two strings 𝑢 and 𝑣 are equivalent
iff bh(𝑢) = bh(𝑣). When describing a one-way machine, only the set of behaviors
that matches the read action of the machine matters; for a left-to-right machine, only
the left-to-right behaviors are relevant. Table 5.5 shows the left-to-right behaviors
of this machine up to the point where all equivalences are determined. Notice that
L acts as an identity, in that LL = L and LH = HL = H. The generated monoid is
shown in graph form in Figure 5.12.

This is a two-element idempotent monoid, so it is a semilattice, both 1-pt and
1-lt. When restricted to the tier of nonidentity elements, the resulting semigroup

82

Table 5.5: Behaviors of high-tone plateauing.
𝑤 bhℓ𝑟 ≡
L {⟨1, 1⟩, ⟨2, 2⟩, ⟨3, 3⟩}
H {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 2⟩, ⟨2, 3⟩}
LL {⟨1, 1⟩, ⟨2, 2⟩, ⟨3, 3⟩} L
LH {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 2⟩, ⟨2, 3⟩} H
HL {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 2⟩, ⟨2, 3⟩} H
HH {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 2⟩, ⟨2, 3⟩} H

Markup (→) Finalize (←)

𝜀 H

L

H

L:X,H

𝜀 H

L,X:L

H

H,L,X:H

Figure 5.13: High-tone plateauing decomposed into two sequential functions.

has only a single element: H. Thus the pattern additionally satisfies the algebraic
properties of the tier-based (co-)finite class.

One could also decompose this function into two: a left-to-right sequential
function that marks up the input followed by a right-to-left sequential function that
finalizes the output. The two components are shown in Figure 5.13. Both L and X are
everywhere self-loops, meaning they are nonsalient. Restricting to the tier of salient
symbols, H alone, the corresponding semigroups have only a single element. Each
function is therefore tier-based (co-)finite, just like the nondeterministic one-way
instantiation. That these decomposed complexities are low can only be relevant,
however, if this kind of separated two-pass approach is used, as composition does
not in general preserve essential algebraic properties.

One may consider one final way of describing this process: a single two-way
function. Figure 5.14 shows such a machine, where ⋊ and ⋉ represent left and right
boundary markers, respectively. Carton and Dartois (2015) suggest generating the
behaviors of all and only those words that do not contain boundary symbols in order
to construct a transition monoid, and the result of doing so is Figure 5.15.

Table 5.6 is the Cayley table of this semigroup. There are five idempotents,
L, HH, LHL, LHH, and HHL, whose local subsemigroups are {L,LHL}, {HH},
{LHL}, {LHH}, and {HHL}, respectively. Four of these are singleton, and therefore
trivially semilattices. The remaining one is a two-element idempotent monoid, and
therefore also a semilattice. Each local subsemigroup is a semilattice, and thus this
two-way function satisfies the algebraic property of local testability. Because the

83

1 2 3 4

5 6

L

H

L:𝜀

H:𝜀:−

⋉:𝜀:−

L:𝜀:−

H:𝜀

L:H

H

L:𝜀:−

H:𝜀 L

Figure 5.14: High-tone plateauing as a two-way transducer.

𝜀

H HL HH HHL

L LH LHH LHL

H

L

L

H

L

H

H

L

L

H

L

H

L

H

H

L

L

H

Figure 5.15: Monoid generated from Figure 5.14.

Table 5.6: The Cayley table of Figure 5.15, idempotents highlighted.
L H LH HL HH LHL LHH HHL

L L LH LH LHL LHH LHL LHH LHL
H HL HH HH HHL HH HHL HH HHL

LH LHL LHH LHH LHL LHH LHL LHH LHL
HL HL HH HH HHL HH HHL HH HHL
HH HHL HH HH HHL HH HHL HH HHL
LHL LHL LHH LHH LHL LHH LHL LHH LHL
LHH LHL LHH LHH LHL LHH LHL LHH LHL
HHL HHL HH HH HHL HH HHL HH HHL

84

[+atr]

[−atr]

V:[+atr]
√

V:[+atr]

√

[+hi]:[+atr]

[−hi]:[−atr]

[−hi]:[+atr]

V:[+atr]

V:[−atr]

[+hi]:[−atr]

V:[+atr]

[−hi]:[−atr]

Figure 5.16: Nondeterministic transducer for Tutrugbu atr harmony.

local subsemigroup generated by L is not trivial, this function is not (tier-based)
generalized definite, unless a simpler structure can be found. Thus, the simplest
analysis is the single one-way nondeterministic transduction, tier-based (co-)finite.

These types of patterns in which the output associated with a given input segment
depends on information both to its left and to its right which may be unboundedly
far away is known as an unbounded circumambient pattern (Jardine, 2016). Jardine
(2016) shows that this type of pattern is not weakly deterministic in the sense of
Heinz and Lai (2013); essentially, any deterministic decomposition requires markup
through some additional symbol. Jardine (2016) used this as a basis to claim that tonal
phonology differs from segmental phonology in terms of computational complexity.
But McCollum et al. (2020) note that unbounded circumambient processes occur in
segmental phonology as well, citing several examples from vowel harmony systems
and concluding that these patterns refute a subregular analysis of phonology. One
such pattern is the vowel harmony of Tutrugbu, where a [+atr] spreads leftward from
the root to prefixes, targeting all vowels, but if the vowel of the first syllable is [+high]
then [−high] vowels act as blockers (McCollum et al., 2020). A right-to-left one-way
nondeterministic finite-state transducer is provided by McCollum et al. (2020); the
same machine is provided here in Figure 5.16 after removing the transitions on
boundary symbols, reassociating the final states accordingly, and merging equivalent
states. The √ symbol represents a distinguished boundary between the root (read
first) and the prefix (read later).

This is a fairly standard way of representing the pattern; the atr value of the
root dictates the pattern, then at some point there is a boundary symbol, and the
prefix undergoes some potential change. As in the source material, the consonants
have been omitted, as they are nonsalient. One can verify by constructing the

85

[+atr]

[−atr]

V𝑅:[+atr],[+hi]𝐴:[+atr]

[−hi]𝐴:[−atr]

[−hi]𝐴:[+atr]

V:[+atr]

V:[−atr]

[+hi]𝐴:[−atr]

V:[+atr]

[−hi]𝐴:[+atr]

Figure 5.17: Tutrugbu atr harmony with separate symbols for roots and affixes.

seventeen-element syntactic monoid that this machine falls properly into the fo2 [<]
class, and is also (tier-based) locally L-trivial.

However, this is not the version I would like to discuss. Rather than using a
distinguished boundary symbol between morphemes, one may wish to encode root
and affix segments differently. Consider the transducer in Figure 5.17, where a
subscript 𝑅 represents a root segment, 𝐴 an affix segment, and a lack of subscript
denotes either. Consider a four-vowel system: i is [+high, +atr], ɪ [+high,−atr],
o [−high, +atr], and ɔ [−high,−atr]. Under this alphabet the generated monoid
still has seventeen elements, just like the other description, but the complexity is
lower: it remains in fo2 [<] but is now only (tier-based) locally testable. Note that
this transducer assigns an arbitrary behavior to root segments that are read after
having read an affix segment. A different assignment may increase or decrease
complexity without changing how the process behaves on well-formed words.

5.6 Conclusions
For deterministic one-way transducers and the order-preserving functions they
represent, the exact algorithms for classifying string acceptors by algebraic means
generalize, and the resulting algebraic structure induces a graph that can be assigned
transition labels in such a way that the original function is preserved. Total input
strictly local maps suffice to describe a large number of phonological processes,
and correspond exactly to the algebraic class of definite functions. Output strictly
local maps are not so easy to describe algebraically; the only class that properly
contains 𝑘-osl, for 𝑘 ⩾ 2, is sequential itself. However, the canonical phonologically
relevant example of an osl function, iterative spreading, is simply tier-based definite.
Long-distance harmony patterns such as Samala sibilant harmony can be tier-based

86

1

D⟦F⟧T

⟦D⟧T⟦K⟧T

⟦LJ1⟧T

circumfixation / total reduplication

input strictly local

iterative spreading

high-tone plateauing

long-distance harmony

Tutrugbu atr harmony

Figure 5.18: Some attested morphophonological functions.

reverse definite if there are no opaque segments, but if such segments are present
then complexity jumps quite a bit. An asymmetric override of harmony remains
simple, at tier-based locally testable but a symmetric override or a full reset requires,
of the classes discussed so far, fo2 [<] to describe.

Finally, nonsequential functions may be analyzed by a further generalization of
this process. High-tone plateauing is in some of the simplest of nontrivial classes:
1-lt (semilattices, JI) and tier-based (co-)finite, and Tutrugbu vowel harmony can
be analyzed in such a way that tier-based locally testable suffices. Nondeterministic
and two-way transducers lack the canonical form afforded by sequential functions,
so while this is a sufficient complexity, it may be more than is truly necessary.

Aside from some types of long-distance harmony with opaque segments, all of
these patterns are at most tier-based locally testable, one of the simpler classes of the
piecewise-local subregular hierarchy. Classifications of functions are depicted in
Figure 5.18. The output structure is defined based on the set of salient 𝑘-substrings
that have appeared so far in the input as well as the most recent (𝑘 − 1) salient input
symbols. Other patterns may well exist with higher complexity. I do not intend
to claim that these functions are representative of all of phonology, rather I have
extended prior literature to provide a framework with which to analyze any process
that one may encounter, and have demonstrated this by exploration of some types of
patterns.

87

PART

II

88

6: LEARNING TIER-BASED STRICTLY LOCAL LANGUAGES

The strictly local (sl) class known from McNaughton and Papert (1971) cannot
account for long-distance dependencies. Meanwhile the strictly piecewise (sp)
class of Rogers et al. (2010, see also Haines, 1969) can account for long-distance
dependencies but cannot handle local constraints. In 2011, Heinz et al. presented a
new tier-based strictly local (tsl) class of stringsets, generalizing sl to account for
both local phenomena and certain types of long-distance phenomena by relativizing
adjacency over a subset of the alphabet. Much like the traditional sl and sp classes,
tsl is parameterized by the width 𝑘 of the factors to which a learner or acceptor
attends. But there is another parameter. If the subset T of the alphabet over which
adjacency is relativized is known a priori, then the input data can be preprocessed
by deleting unnecessary symbols and the grammar inferred by any of a number
of strictly local learning algorithms, such as that of Garcia et al. (1990) or that of
Heinz (2010b). But learning T from data alone has proven difficult, especially in a
bounded-memory setting.

Since the introduction of the tsl class, it has been characterized model-,
language-, and automata-theoretically by Lambert and Rogers (2020), extended to
even richer classes by De Santo and Graf (2019) and by Chapter 3 of this document,
and shown to be batch-learnable in the style of Gold (1967) by Jardine and Heinz
(2016) for 𝑘 of 2 and by Jardine and McMullin (2017) for arbitrary 𝑘 . But despite all
this progress, no general online learning algorithm has yet been produced, leaving
the tsl class behind in an area where several other subregular classes flourish.

Here we discuss an online learning algorithm in the style of Heinz (2010b) that
essentially combines the approaches taken in the earlier batch-learning algorithms
with a novel representation of the tsl grammar to accommodate online learning.
This development removes one argument against tsl descriptions of phonological
patterns, namely that human learners likely do not operate in batch. (Batch learning
requires awareness of all prior input, which is implausible at best for human learners.)

Section 6.1 discusses background material. Then section 6.2 summarizes prior
literature on discovering the set of salient symbols and provides space- and time-
complexity analyses of the algorithms. Section 6.3 introduces a structure that can be
gathered while determining salience, which provides sufficient information to recover
the grammar of forbidden factors while avoiding unbounded data storage. Then
section 6.4 demonstrates a pointwise application of the string extension learning
algorithm of Heinz (2010b) to this problem, and introduces a simplification that
allows for reinterpretation of an sl grammar as a tsl one.

89

6.1 Preliminaries
This section contains background material fundamental to this work. Section 6.1.1
provides a brief overview of the sl and tsl classes, with examples. Section 6.1.2
discusses the learning framework in use, and section 6.1.3 details the family of
learning algorithms that includes our result.

6.1.1 (Tier-Based) Strict Locality
In general, a factor is some substructure of a word that is connected in some
sense. For the sl languages as defined by McNaughton and Papert (1971), these
substructures are simply adjacent sequences of symbols. For example, there are
seven factors in the string “abc”: “”, “a”, “b”, “c”, “ab”, “bc”, and “abc” itself.
Notably, “ac” is not a factor under this interpretation. The size of a factor is the
length of the sequence. An sl language is characterized by a set of forbidden factors,
containing all and only those strings in which no forbidden factor occurs. If the
largest factor in the set of forbidden factors is of size 𝑘 , then the language is 𝑘-sl.
One example of an sl language over the alphabet Σ = {a, b, c, d} is that in which the
forbidden factor is “ab”.

One can prove that a language is not 𝑘-sl by using what is known as Suffix
Substitution Closure: finding two valid words 𝑤 = 𝑤𝑝𝑥𝑤𝑠 and 𝑣 = 𝑣𝑝𝑥𝑣𝑠 that share
a common factor 𝑥 of length 𝑘 − 1 where 𝑤𝑝𝑥𝑣𝑠 is not a valid word (Rogers and
Pullum, 2011, see also De Luca and Restivo, 1980). If such 𝑤 and 𝑣 can be found for
any 𝑘 , then the language is not sl.

Consider a slight modification to this example language: not only is “ab”
forbidden, but also “adb”, “addb”, “adddb”, etc. Essentially, “d” is invisible to
the constraint. Now 𝑤 = ad𝑘−1a and 𝑣 = bd𝑘−1b are both valid words, but after
suffix-substitution we have “ad𝑘−1b” which is not valid. Thus this pattern is not sl.
The tsl class seeks to capture exactly the constraints that would be sl if only some
category of symbols could be ignored. It is defined by applying an sl grammar not to
the words themselves but to their projection to a tier alphabet T (Heinz et al., 2011).
In this case, T = {a, b, c} and the grammar is the same as before. See Chapter 3 for
further information on the tsl class, including how to decide membership. Note that
while the previous discussion involved forbidden factors, the finiteness of both the
factor width and alphabet size allows an equivalent description in terms of permitted
factors.

6.1.2 Our Learning Problem
Gold (1967) introduces a number of learning paradigms, but here we will focus on
the case when a language is learned in the limit from distribution-free positive data.
We further restrict ourselves to consider only online learning, where the induction
function takes as arguments not an entire input set, but only a single input item along

90

with a previously proposed grammar. This section formalizes these notions.

Let 𝐿 ⊆ Σ∗ be a stringset and let 𝐿⊚ be 𝐿 with an adjoined element ⊚ that
represents the lack of any string. A text for 𝐿 is a total, surjective function 𝑡 : N→ 𝐿⊚,
an infinite sequence of strings drawn from 𝐿 that contains each string at least once,
and may at some points present no data. Note that for any non-empty stringset, there
are infinitely many possible distinct texts. The addition of ⊚ is a deviation from the
original work by Gold but without it no text exists for the empty stringset (Osherson
et al., 1986). For a given text 𝑡, let ⇀

𝑡𝑛 represent the sequence ⟨𝑡0, 𝑡1, . . . , 𝑡𝑛⟩, i.e. the
initial segment of 𝑡 of length 𝑛 + 1. We denote the class of texts for 𝐿⊚ by T and the
class of initial segments thereof by ⇀

T.

A grammar is some representation of a mechanism by which the membership of
a string in a stringset may be decided. Let G be a set of possible grammars, and let
X : G→P(Σ∗) be a function that transforms a grammar into its extension, i.e. the
set of all strings that it accepts. Two grammars 𝐺1 and 𝐺2 are equivalent (written
𝐺1 ≡ 𝐺2) iff they are extensionally equal, i.e. X(𝐺1) = X(𝐺2). A batch learner is
then a total function 𝜑 : ⇀

T → G. In words, a batch learner is an algorithm that takes
as input an initial segment of a text and outputs a guess at the correct grammar.

Given a text 𝑡 and a learner 𝜑, we say that 𝜑 converges on 𝑡 iff there is some point
after which its guess never changes. Formally, that means there exists some 𝑖 ∈ N
and some grammar 𝐺 such that for all 𝑗 ⩾ 𝑖, it holds that 𝜑(⇀𝑡 𝑗) ≡ 𝐺. If given any
text 𝑡 for a stringset 𝐿, 𝜑 converges on 𝑡 to a grammar 𝐺 such that X(𝐺) = 𝐿, then
we say that 𝜑 identifies 𝐿 in the limit. For any class of stringsets L ⊆P(Σ∗), we say
that 𝜑 identifies L in the limit iff it identifies 𝐿 in the limit for all 𝐿 ∈ L.

An online learner differs from a batch learner only in how it assumes the data is
presented. For a batch learner, the function is of type 𝜑 : ⇀

T → G as discussed. On
the other hand, an online learner, sometimes called an incremental learner, is of
type 𝜑 : G × 𝐿⊚ → G, taking as input a previous guess and a single data point (Jain
et al., 2007). Ideally the online learner can take more input over time in an efficient
way while maintaining a bounded information store.

6.1.3 String Extension Learning

Heinz (2010b) described a general algorithm for learning (among others) stringsets
that can be described by a set of permitted factors of length bounded above by 𝑘 .
For this case G = P(Σ𝑘). In general, given a function 𝑓 : Σ∗ →P(Σ𝑘) that maps a

91

string to the set of factors it contains, one can define a batch learner 𝜑 𝑓 as follows

𝜑 𝑓 (⇀𝑡𝑖) ≜

∅ if 𝑖 = 0, 𝑡𝑖 = ⊚
𝑓 (𝑡𝑖) if 𝑖 = 0, 𝑡𝑖 ≠ ⊚
𝜑 𝑓 (⇀𝑡𝑖−1) if 𝑖 ≠ 0, 𝑡𝑖 = ⊚
𝜑 𝑓 (⇀𝑡𝑖−1) ∪ 𝑓 (𝑡𝑖) otherwise.

Effectively one begins with a guess of the empty grammar, and for each string
provided, this guess is updated to include all factors encountered in that string. A
factor is attested iff it appears in some string in the input. The online variant of this
same function is identical except that strings are provided one at a time.

𝜑 𝑓 (𝐺, 𝑤) ≜
{
𝐺 if 𝑤 = ⊚

𝐺 ∪ 𝑓 (𝑤) otherwise.

If the parameter 𝑘 is fixed and known, this approach identifies the 𝑘-sl class in
the limit. If this holds and further the parameter T is fixed and known, this approach
also identifies 𝑘-tslT in the limit. But in general when learning tsl generalizations,
we want to be able to account for the case where T is unknown.

6.2 Deciding Salience
When learning a 𝑘-tslT stringset, if T is not provided then a learner must discover
not only the underlying sl constraints, but also the class of symbols that are salient
for these constraints. The model-theoretic view of 𝑘-tslT given by Lambert and
Rogers (2020) makes this explicit in that the ordering relation never connects to
a position containing a symbol outside of T. There is no way to even talk about
the other symbols. It follows then that there is no way to restrict their occurrence,
meaning they are freely insertable and deletable in all strings. This property is
what allows for the salience-finding algorithm of Jardine and McMullin (2017). We
discuss here a simplification of that original work.

Given the set of all factors under adjacency of width up to 𝑘 + 1 in the stringset,
a symbol 𝑥 is freely insertable iff for each attested factor of width less than or equal
to 𝑘 , inserting 𝑥 at each possible point in turn results in an attested factor one symbol
wider. Similarly, 𝑥 is freely deletable iff for each attested factor of width 𝑘 + 1 that
contains 𝑥, the removal of each instance of 𝑥 in turn results in an attested factor one
symbol narrower. This is a deviation from the original work in that Jardine and
McMullin use only factors of widths in the range 𝑘 ± 1, but the formulation here
avoids making a special case of shorter words. The symbols that are not both freely
insertable and deletable are the salient ones.

92

n s ta i i ʃ

Figure 6.1: The tier-successor relation preserves linear order, but ignores certain
symbols. Importantly, if a symbol is included then it is not also ignored.

In summary, let F𝑘+1 represent all attested factors of width 𝑘 + 1 or less and F𝑘

represent all those of width 𝑘 or less, and define for each symbol 𝜎 ∈ Σ two sets: 𝜎⊕
containing all possible factors obtained by adding a single instance of 𝜎 to F𝑘 , and
𝜎⊖ containing all possible factors obtained by deleting a single instance of 𝜎 from
F𝑘+1. Then the set of salient symbols is

T = {𝜎:𝜎⊕ ⊈ F𝑘+1 or 𝜎⊖ ⊈ F𝑘 }.

Thus to decide salience we can use exactly the sl string extension learner
described in section 6.1.3 and then post-process the resulting grammar by this
algorithm.

In terms of time and space complexity, this portion of the algorithm is relatively
efficient. There are |Σ |𝑘 possible factors of width 𝑘 , and thus by summation there
are |Σ |

𝑘+2−|Σ |
|Σ |−1 possible factors of width up to 𝑘 + 1. Supposing we store one bit per

possible factor that represents whether or not it is attested, we require O(|Σ |𝑘+1) bits.
For each word, its factors can be found in linear time, and each factor can be marked
as attested in this set in time logarithmic in the set’s size. That is, for an input of size
𝑛, the time complexity of gathering factors to determine salience is O(𝑛𝑘 log |Σ |).

6.3 The Substructures
Because Jardine and McMullin (2017) assume a batch-learning setting, they can
simply learn the set of salient symbols, then erase all other symbols from the input
and (in a second pass) analyze the result with any sl learner. Performing a second
pass over the input requires this input to be retained. This, of course, results in
unbounded space requirements and is therefore unsuitable for an online setting.

Fortunately, we can avoid this memorization of the input. A factor over relativized
adjacency is made up of a sequence of symbols that appear in order, but not necessarily
adjacently. These structures are, in general, referred to as subsequences (Heinz,
2010a; Rogers et al., 2010). Figure 6.1 shows one possible factor of width three
(“nst”) in the string “nasitiʃ” (Slovenian for “(you) feed”, Jurgec, 2011). Crucially,
when gathering subsequences, if a symbol is included in the subsequence, it can
never later be excluded in that same subsequence. The factor “itʃ” then would be
invalid in this example and excluded from consideration because it both contains an

93

“i” but goes on to skip the second “i”.
There are

(𝑛
𝑘

)
subsequences of width 𝑘 in a word of length 𝑛, where this notation

represents a binomial coefficient. It follows that the time complexity to find them is
O(𝑛𝑘/𝑘!), and the same holds when including smaller factors as well. If for each
factor we store the set of symbols that intervened, much like the paths of Jardine
and Heinz (2016), then we need to account for the time it takes to find the set
associated with the particular factor and to mark the intervener-set as attested. These
are additional multipliers of 𝑘 log |Σ | and |Σ |, respectively. So in total the time
complexity is O

(
𝑛𝑘/(𝑘 − 1)! · |Σ | log |Σ |

)
.

Formally, if 𝑤 = 𝜎1 . . . 𝜎𝑛 (𝜎𝑖 ∈ Σ) is a string and 𝑋 = ⟨𝑖1, . . . , 𝑖𝑘⟩ (𝑘 ⩽ 𝑛)
is an increasing sequence of indices, then the subsequence indicated by 𝑋 is
𝑄 = ⟨𝜎𝑖1 , . . . , 𝜎𝑖𝑘 ⟩. The intervener-set is I = {𝜎𝑗 : 𝑖1 < 𝑗 < 𝑖𝑘 and 𝑗 ∉ 𝑋}. The pair
⟨𝑄,I⟩ is the augmented subsequence indicated by 𝑋 . A valid subsequence is one
where no symbol appears in both 𝑄 and I. Henceforth, any mention of subsequences
is restricted to the valid ones.

Unfortunately it appears that to store all possible augmented subsequences, we
would need space significantly beyond exponential in the size of the alphabet and
factor width, O(|Σ |𝑘 · 2|Σ |). But it turns out that we can exploit some structure in
order to store significantly less. If a subsequence is in fact contiguous, that is it
skips nothing, then no matter how adjacency is relativized that subsequence will
still be an attested factor as long as it is valid. In fact a generalization holds: if a
factor is attested with intervener-set I, then it can also be assumed to be attestable
for any superset of I for which it remains valid. So one needs only maintain the
smallest observed intervener-sets (partially-ordered by subset). This means that the
size of the set stored by any particular factor will never exceed O

((|Σ |
|Σ |/2

))
, which is

still exponential in |Σ |, but many factors will store just a single set: ∅. Given these
interactions, we conjecture that the space complexity will often be sub-exponential in
the size of |Σ |. Table 6.1 shows the possible augmented subsequences for 𝑘 = 2 in the
string “cabacba” and indicates which subset of those actually need to be maintained.
However, we show in section 6.4 that we can avoid this source of space complexity
entirely.

Once the set of salient symbols T is known, we can derive a standard 𝑘-tslT

grammar from this set of augmented subsequences. A subsequence is a permitted
factor iff all of the symbols that comprise it are salient and it is attested for an
intervener-set that is disjoint with T. Otherwise it is a forbidden factor.

6.4 Pointwise String Extension Learning
In sections 6.2 and 6.3, we discussed two different kinds of substructure that can
be gathered when learning 𝑘-tsl: the substrings of length bounded above by

94

Table 6.1: In gathering augmented subsequences for “cabacba”, many possibilities
can be ignored. The intervener-sets are shown simply as sorted strings to avoid
nested braces. Here, only the undecorated sets are maintained; those struck through
were invalid from the start, while those in light gray are subsumed.

Factor Intervener-Sets

aa {b, abc, bc}
ab {∅, abc, c}
ac {ab,∅}
ba {∅, abc}
bb {ac}
bc {a}
ca {∅, ab, abc, b}
cb {a, abc,∅}
cc {ab}

𝑘 + 1, which allow us to determine which symbols are salient, and the augmented
subsequences of length bounded above by 𝑘 , which allow us to select a set of
permitted factors once salience has been determined. If we let the hypothesis space
G = P(Σ⩽𝑘+1) ×P(Σ⩽𝑘 ×P(Σ)), then we can define a learner

𝜑(⟨𝐺ℓ, 𝐺𝑠⟩, 𝑤) ≜
{
⟨𝐺ℓ, 𝐺𝑠⟩ if 𝑤 = ⊚〈
𝐺ℓ ∪ 𝑓 (𝑤), 𝑟

(
𝐺𝑠 ∪ 𝑥(𝑤)

)〉
otherwise,

where 𝑓 : Σ∗ →P(Σ⩽𝑘+1) gathers all and only those substrings of 𝑤 whose width
is bounded above by 𝑘 + 1, 𝑥 : Σ∗ →P(Σ⩽𝑘 ×P(Σ)) extracts the valid augmented
subsequences of 𝑤 of width bounded above by 𝑘 , and 𝑟 : P(Σ⩽𝑘 ×P(Σ)) →
P(Σ⩽𝑘 ×P(Σ)) restricts the set of augmented subsequences to exclude any that are
entailed by any other. This is effectively two distinct string extension learners run in
parallel, pointwise on the composite grammar.

The composite grammar can immediately be used as an acceptor without further
processing. We replace the cost of deciding salience by that of finding augmented
subsequences.

X(⟨𝐺ℓ, 𝐺𝑠⟩) ≜
{
𝑤: 𝑓 (𝑤) ⊆ 𝐺ℓ and 𝑟

(
𝐺𝑠 ∪ 𝑥(𝑤)

)
⊆ 𝐺𝑠

}
.

In words, a string is accepted iff it has only permitted substrings and each of its valid
augmented subsequences is attested or entailed by something that is attested.

Depending on the parameters and the size of the input words, this strategy might

95

be a good one. In other situations, it might be better to actually determine which
symbols are salient. Recall that a text contains every valid word at least once, and
that non-salient symbols are freely deletable in all strings. Free deletability of
non-salient symbols implies that any subsequence that includes only salient symbols
will, in some word of the text, have only its salient interveners as interveners. Those
subsequences that do not violate constraints on the tier then must appear with an
empty intervener set. In other words, such subsequences will appear as factors in
terms of adjacency and will be accounted for by that component of the composite
grammar.

Thus upon convergence the left component of this composite grammar, 𝐺ℓ, is
sufficient on its own to decide salience and to extract the grammar itself. 𝐺𝑠 is
unnecessary. Let 𝑠 : G→P(Σ) be the function that decides salience in the manner
described in section 6.2, and let 𝜋T(𝑤) represent the projection to T of 𝑤 as described
by erasing symbols that are not in T. Then we might have the following as an
equivalent alternative definition

X(𝐺) ≜
{
𝑤: 𝑓

(
𝜋𝑠(𝐺) (𝑤)

)
⊆ 𝐺

}
.

As an aside, the deletion-closure of the strictly piecewise class of stringsets
(Rogers et al., 2010, see also Haines, 1969) enables this same sort of learning of
long-distance patterns using only adjacent substrings.

Revisiting the time and space complexities mentioned previously, this optimized
version of the grammar can be learned in O(𝑛𝑘 log|Σ |) time and O(|Σ |𝑘) space,
exactly those values that were assumed for only the salience-decision component of
learning. The time complexity is deferred to later, in interpreting the grammar as
𝑘-tsl rather than as (𝑘 + 1)-sl.

6.5 A Worked Example of the Final Simplified Approach
Consider a blocked-assimilation constraint such as the consonant harmony of
Slovenian (Jurgec, 2011), where an “ʃ” may not occur after an “s” until a coronal
obstruent intervenes. This is equivalent to the example language described in
section 6.1.1. We will assume for now that no other constraint interacts with this.
Assuming a simplified alphabet consisting of two sibilants (“s” and “ʃ”), a coronal
obstruent (“t”), and a vowel (“a”), we discuss a worked example that learns this
constraint.

As this can be described by the 2-tsl {s,ʃ,t} constraint whose forbidden factor is{
sʃ
}
, the text must contain all substrings of width three or less whose projection to

{s, ʃ, t} do not contain this prohibited bigram. The words shown in Table 6.2 would
constitute a representative sample for this constraint, though one may notice that
some of the 3-factors that need to appear are phonologically implausible.

96

Table 6.2: Some words of varying degrees of phonological plausibility. Each set is
in the order produced by a sliding 3-window. Factors already accounted for are in
light gray.

asataʃta {asa, sat, ata, taʃ, aʃt, ʃta}
ʃastʃaʃ {ʃas, ast, stʃ, tʃa, ʃaʃ}
atʃtsa {atʃ, tʃt, ʃts, tsa}

assaattaaʃʃa {ass, ssa, saa, aat, att, tta, aaʃ, ʃʃa}
sasttat {sas, ast, stt, tta, tat}
ʃaasta {ʃaa, aas, ast, sta}
aʃʃsats {aʃʃ, ʃʃs, ʃsa, sat, ats}
asstaʃat {ass, sst, sta, taʃ, aʃa, ʃat}
aʃstasts {aʃs, ʃst, sta, tas, ast, sts}
aʃʃʃtʃʃa {aʃʃ, ʃʃʃ, ʃʃt, ʃtʃ, tʃʃ, ʃʃa}

taaatʃssa {taa, aaa, aat, atʃ, tʃs, ʃss, ssa}
attsss {att, tts, tss, sss}
attʃtta {att, ttʃ, tʃt, ʃtt, tta}

If we assume that domain boundaries are explicit, then we would also need to
encounter any permitted factors that include these boundary symbols. For the sake
of brevity such an account has been omitted, but one could easily construct similarly
implausible words to account for this change.

6.6 Non-Strict Locality
These methods can be extended beyond just tsl . Chapter 3 demonstrates that
the locally testable (McNaughton and Papert, 1971) and locally threshold testable
(Beauquier and Pin, 1989) stringsets admit T-relativized variants with the same
properties as tslT:

• A string appears iff its projection to T appears, and

• All symbols that are not in T are freely insertable and deletable.

Locally threshold testable stringsets are characterized by not just the factors in each
word but the saturating multisets of factors in the words. A saturating multiset is a
variant of the multiset in which the counts associated with elements are capped to
some maximum value, 𝑡. Multisets that saturate at a count of 𝑡 = 1 are simply sets,
and these are the characterization of locally testable.

Due to the two properties of relativization, if we collect the saturating multisets
of substrings of width bounded above by 𝑘 along with the individual factors of width
𝑘 + 1, we can still use the algorithm described in section 6.2 to determine salience

97

5 10 15

10100.2

10100.4

10100.6

10100.8

10101.0

10101.2

Factor Width

Space Requirements for Learning

Factors
Sets
2-Saturating Multisets
3-Saturating Multisets

Figure 6.2: While gathering factors requires space exponential in terms of factor
width, the requirements are doubly exponential for any of the larger structures we
might employ. Here the space requirements are shown for just a binary alphabet.

and again treat the non-relativized grammar in a relativized way. The issue is not
finding a learning algorithm; instead it is the space complexity. Figure 6.2 shows
the amount of space required for factors, O(|Σ |𝑘), compared to that of saturating
multisets, O

(
(𝑡 + 1) |Σ |𝑘

)
. Of course, Σ and 𝑘 are fixed parameters for any given run

of the algorithm, and thus constant, but this complexity should not be ignored.

6.7 Conclusions
We proposed an online learning algorithm for the tier-based strictly 𝑘-local class of
stringsets that operates in linear time, O(𝑛𝑘 log |Σ |), and constant space, O(|Σ |𝑘+1),
in terms of the size of the input. This space complexity is exponential in the
factor width. We demonstrated that the grammar representation given by a strictly
𝑘-local learner can also be interpreted as a strictly 𝑘-piecewise or tier-based strictly
(𝑘 − 1)-local grammar. The difference comes later, in the interpretation of the
grammar. The algorithms presented here can be incorporated into any sufficiently
general implementation of string extension learners (Heinz, 2010b).

Efficient learning of interacting constraints remains an open question. Generally
the set of symbols salient to a pattern as a whole will be some superset of those sets
for its constraints. If a stringset 𝐿 consists of a tsl component with an additional
constraint imposed that restricts the set of substrings that may occur, then 𝐿 will
not in general be learnable by the known tsl-learning algorithms including those
presented here. If multiple tsl constraints over different tier alphabets interact, the
learned stringset will consider the set of salient symbols to be the union of all such
alphabets, but other sorts of interactions have yet to be explored. Notably, sl is

98

equivalent to tslΣ by definition, and any sp constraint imposes a tier of salience
including the symbols that it mentions, so many cases of interaction will result in a
tslΣ (that is, sl) approximation of the target stringset.

This lack of robustness in the face of constraint interaction poses a challenge
for the learnability of tsl constraints within a more complex structure in a natural
setting. If the solution to this problem is learning a new grammar for each possible
tier alphabet, rather than trying to determine which such alphabet to consider, then
we must bear in mind the additional space requirements, exponential in the size of
the alphabet. Such an approach yields the multiple-tier-based strictly local languages
of De Santo and Graf (2019).

Finally it must be noted that the learners of this chapter have been evaluated
within a Gold-style framework of limit-learning from positive data. Like all string-
extension learners (Heinz et al., 2012), it will produce a result for any finite sample,
and will produce the correct result on any finite sample containing all and only
the permissible factors. Generally, data containing undesired factors will result in
overgeneration, while data lacking desired factors will result in undergeneration.
In either case, the tier-finding algorithm may infer more salience than necessary,
resulting in undergeneration. Therefore a more natural setting for learning in which
data is missing or noisy will bring difficulty. An area of future work is to counter the
hardships brought by natural data, perhaps invoking something akin to the Tolerance
Principle (Yang, 2005).

99

7: TREE ACCEPTORS AS ORDERED DIRECTED HYPERGRAPHS

Finite-state acceptors over sequences are used for many purposes such as text search
(Thompson, 1968) or control flow. They are commonly represented as a directed
graph, but such an acceptor can represent only a regular language (Kleene, 1956).
Using trees instead of sequences allows for exact classification of a context-free
language, such as the Dyck language of balanced brackets, while maintaining a finite
amount of state information (McCawley, 1968). Klein and Manning (2004) provide
a hypergraph representation of finite-state acceptors over trees, but the resulting
structure requires instantiating free indices in the nodes during a parse, which can
result in the generation of unboundedly many ground states. This is unnecessarily
redundant, generating a state-space which grows along with the input to be checked,
mirroring a typical chart-parse.

This chapter introduces a generalization of hypergraphs that map sequences to
sequences rather than mapping sets to sets. This can directly encode the transition
relation of a tree acceptor, which maps a sequence of states to a single state. The
resulting structure is a direct generalization of the graph structure used to represent
string acceptors. Graph-based analyses of common decision problems and operations
are provided. String acceptors can be reinterpreted unchanged as tree acceptors
under this framework. When deciding if a tree is acceptable, the state-space remains
constant no matter the size of the input. This can also be useful pedagogically, as
in contrast to introductory texts on string acceptors such as that of Hopcroft and
Ullman (1979), works regarding tree acceptors such as those of Comon et al. (2007)
or Gécseg and Steinby (1984) have no illustrations of the machines.

First we discuss background material in section 7.1. This includes the concepts
of finite-state acceptors over sequences and over trees, as well as the graph-based
representations that have been used for each. Next, a generalization of the hyper-
graph is introduced in section 7.2, which will then serve as the foundation for a
novel representation of tree acceptors. Standard automaton operations including
determinization, minimization, completion, trimming, and the Boolean operations
are discussed in section 7.3. Finally we conclude with a summary.

7.1 Background

This section provides a brief overview of finite-state acceptors, reviewing the concept
through a structural lens and introducing application to trees.

100

7.1.1 Trees
A sequence can be thought of as a linked list, with each position containing a symbol
from the alphabet as well as a single connection to the rest of the structure. A tree
is similar, except rather than a single connection there is an ordered sequence of
connections to smaller structures. Traditionally trees are described in terms of a
ranked alphabet, where the alphabet consists not of symbols alone, but of symbol/rank
pairs. This bounds the expansion of the width of the tree. If the pair ⟨𝑥, 𝑛⟩ appears in
the alphabet, representing the symbol 𝑥 with rank 𝑛, then a node labeled 𝑥 is allowed
to have exactly 𝑛 children. A symbol may appear with more than one rank. That is, a
tree is a structure built of the symbol 𝑥 and a sequence of 𝑛 subtrees.

Unranked tree languages, where there is no limit on the lengths of the sequences
of subtrees, are used in some circumstances such as xml parsing (Barrero, 1991;
Gelade et al., 2013). As will be discussed later when detailing completion and
complementation algorithms, the structures described here can represent both ranked
and unranked tree languages.

7.1.2 Finite-State Acceptors
Recall that a string acceptor is definable by a five-tuple ⟨Σ, 𝑄, 𝛿, 𝑞0, 𝐹⟩, where Σ is a
finite alphabet, 𝑄 is a finite set of states, 𝛿 is a finite relation in Σ ×𝑄 ×𝑄, 𝑞0 ∈ 𝑄
is an initial state, and 𝐹 ⊆ 𝑄 is a set of final states. Recall also that assignment
of states may proceed either left-to-right or right-to-left, as regular languages are
closed under reversal. When it comes to trees, the situation is similar. States may be
assigned either top-down (from the root to the leaves) or bottom-up (from the leaves
to the root). If 𝛿 may be an arbitrary relation, if the acceptor is nondeterministic,
then both orderings are expressively equivalent (Comon et al., 2007). However if
𝛿 is required to be a function, if the acceptor is required to be deterministic, the
bottom-up ordering is strictly more powerful than the top-down ordering, and indeed
as expressive as a nondeterministic acceptor (Comon et al., 2007). Therefore only
bottom-up acceptors will be considered here. A deterministic bottom-up finite-state
tree acceptor for trees over a finite alphabet Σ can be defined by a finite set 𝑄 of
states, a transition function 𝛿 : Σ × 𝑄∗ → 𝑄 whose preimage is finite, and a set
𝐹 ⊆ 𝑄 of accepting states. Note that the rank information can be inferred from the 𝛿

function and need not be explicitly encoded as part of Σ, although we will see in
section 7.3 that the rank information is needed for completion. No initial state is
needed, as the initial states are those reached by leaves (symbols of rank 0). If a
node labeled 𝑥 has children ⟨𝑐1, . . . , 𝑐𝑛⟩ and each 𝑐𝑖 has been assigned a state 𝑞𝑖,
that node is assigned the state 𝛿(𝑥, ⟨𝑞1, . . . , 𝑞𝑛⟩). This holds for leaves as well; a
leaf labeled 𝑥 is assigned the state 𝛿(𝑥, 𝜀), where 𝜀 represents the empty sequence.
This can be effectively computed by beginning at the root, descending to the leaves,
and bubbling up the state information. Represent a tree by 𝑥 [𝑡1, . . . , 𝑡𝑛], where 𝑥

101

S

a S

a b

b

→ S

𝑞𝑎 S

𝑞𝑎 𝑞𝑏

𝑞𝑏

→ S

𝑞𝑎 𝑞𝑆 𝑞𝑏

→ 𝑞𝑆

Figure 7.1: Accepting a tree.

is the label of the root node, and each 𝑡𝑖 is a child subtree. The state computed for
this tree is 𝛿∗(𝑥 [𝑡1, . . . , 𝑡𝑛]) = 𝛿(𝑥, ⟨𝛿∗(𝑡1), . . . , 𝛿∗(𝑡𝑛)⟩). When a leaf is reached,
the sequence of children is empty and the base case is reached: 𝛿∗(𝑥 []) = 𝛿(𝑥, []).

Given a context-free grammar (cfg) defined by a set 𝑁 of nonterminal symbols,
a set 𝑇 of terminal symbols, and a relation 𝑅 ⊆ 𝑁 × (𝑁 ∪ 𝑇)∗ describing rules,
a deterministic bottom-up tree acceptors (dbfta) representing the corresponding
language can be constructed. For each terminal 𝑡 ∈ 𝑇 , assign 𝛿(𝑡, 𝜀) = 𝑞𝑡 , and for
each rule 𝑛, ⟨𝜎1, . . . , 𝜎𝑛⟩, assign 𝛿(𝑛, ⟨𝜎1, . . . , 𝜎𝑛⟩) = 𝑞𝑛. This directly encodes
the rules as a dbfta, and all that remains is to mark the states associated with
start symbols as accepting. Consider the cfg whose terminals are “a” and “b”,
whose sole nonterminal and start symbol is “S”, and whose rules are S→ ab and
S→ aSb. Figure 7.1 shows the assignment of states to a particular tree using the
dbfta derived from this cfg.

7.1.3 Directed Graphs and Extensions Thereof
A directed graph (a digraph) consists of a set𝑉 of nodes and a set 𝐸 ⊆ 𝑉 ×𝑉 of edges
between them. These edges may be labeled by elements of some finite alphabet Σ,
in which case there is a labeling function 𝜆 : 𝜎 →P(𝐸). In other words, a labeled
digraph is a collection of overlaid digraphs, sharing nodes but each having its own
edges.1 A finite-state string acceptor is representable as a labeled digraph, where
the states are represented as nodes, the transition 𝛿(𝜎, 𝑞𝑠) = 𝑞 𝑓 is represented by
the existence of the edge ⟨𝑞𝑠, 𝑞 𝑓 ⟩ in 𝜆(𝜎), and the initial and accepting states are
somehow marked as such. Figure 7.2 depicts a string acceptor whose associated set
is all and only those strings which contain an even number of occurrences of the
symbol 𝑎 that has been discussed above.

If the set of edges were instead 𝐸 ⊆P(𝑉) ×P(𝑉) then the underlying structure
would be a hypergraph. This is not in itself sufficient to represent a tree acceptor, as
trees are ordered. Moreover, a single state may inhabit two positions in the source set,

1Alternatively, a labeled graph may be represented as a heterogeneous 2-colored graph, where one
color represents the actual nodes and the other represents the edge labels. The two are equivalent iff
edges are allowed to lack sources or sinks.

102

start

𝑏

𝑎

𝑏
𝑎

Figure 7.2: A finite-state string acceptor: doubly-outlined states are accepting, and
the initial state is marked by “start”. All and only those strings which contain an
even number of occurrences of 𝑎 are accepted.

𝑎 : [𝑖, 𝑘1] 𝑏 : [𝑘1, 𝑗]

𝑆 : [𝑘1, 𝑘2]

𝑏 : [𝑘2, 𝑗] 𝑆 : [𝑖, 𝑗]

Figure 7.3: S→ aSb and S→ ab as an unlabeled directed hypergraph. Each rule is
represented by a hyperedge.

which is not representable directly. That said, these hypergraph-structured automata
have been used to represent trees by encoding free indices into the state-space (Klein
and Manning, 2004). A representation of a tree acceptor as an unlabeled directed
hypergraph like those of Klein and Manning (2004) is shown in Figure 7.3.

This representation is unsatisfying for at least two reasons. First, there is no ability
to directly interpret a standard finite-state string acceptor as such a tree acceptor,
despite the fact that a sequence is just a degenerate tree. Additionally, parsing a
particular string instantiates the indices on the states, potentially many times. For
instance, the string “aaabbb” will be parsed as follows:

103

𝑆 : [0, 6]

𝑎 : [0, 1] 𝑆 : [1, 5]

𝑎 : [1, 2] 𝑆 : [2, 4]

𝑎 : [2, 3] 𝑏 : [3, 4]

𝑏 : [4, 5]

𝑏 : [5, 6] .

Each node in this parse tree becomes a state in the derivation, despite the fact that
𝑎 : [𝑖, 𝑘1] appears only once in the automaton.

7.2 Ordered Directed Hypergraphs
This section introduces a variant of hypergraphs in which edges connect not sets to
sets, but sequences to sequences. This modification avoids the need for multiple
nodes per symbol, as well as multiple instantiations of nodes during parsing. Rather
than having nodes for symbols augmented by free indices, these objects will have
one node per state of the acceptor, which for a context-free grammar need not be
more than one per symbol.

An ordered directed hypergraph is a structure comprised of a set 𝑉 of nodes and
a set 𝐸 ⊆ 𝑉∗ × 𝑉∗ of edges. Representing a dbfta in this form is simple. As in
the case of a string acceptor, each state is represented by one and only one node. A
transition on symbol 𝑥 from states ⟨𝑞1, . . . , 𝑞𝑛⟩ to state 𝑞 is represented by exactly
such a labeled edge. The {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝑎𝑏} tree acceptor is shown again in
Figure 7.4, this time as an ordered directed hypergraph. Each edge has a sequence of
sources and a sequence of sinks, denoted by numeric indices on the edges. In the
case of a tree acceptor, the sequence of sinks is always singleton (they are 𝐵-graphs)
and the redundant label is omitted.

An alternative graphical representation is inspired by Valdivia et al. (2021).
Hypergraphs and their (ordered) directed variants can be represented in tabular
format where each state labels a row and each edge labels a column. Accepting states
are denoted by their row header being boxed. If a state is a source of an edge, the
set of indices at which it appears is placed in the cell (or just some marker, if the
sources are unordered). If a state is the sink of an edge, then the corresponding cell
is marked. The graphs in question here will never have multiple sinks, so denoting
their indices is unnecessary. Figure 7.5 shows the same automaton as Figure 7.4.
This tabular representation may be better for visualization purposes, since there are
no layout constraints regarding the crossing of edges.

As another example, the following cfg, representing Boolean expressions over

104

𝑞𝑆𝑞𝑎 𝑞𝑏

0
1

2

0 1
S

S

a b

Figure 7.4: S→ aSb and S→ ab as a labeled ordered directed hypergraph. Each
rule is represented by a hyperedge, and accepting states are represented by being
doubly outlined.

a b S S

𝑞𝑎 {0} {0}
𝑞𝑏 {1} {2}
𝑞𝑆 {1}

Figure 7.5: A tabular representation of the dbfta of Figure 7.4.

105

E

V

BU

𝑥 𝑦

¬
∧

∨
0,2 1

1
0

0

𝐸𝐸

𝐸

Figure 7.6: A tree acceptor for Boolean expressions over two variables.

¬ ∧ ∨ 𝑥 𝑦 𝐸 𝐸 𝐸

U {0}
B {1}
V {0}
E {1} {0, 2}

Figure 7.7: The tabular representation of Figure 7.6.

the two variables 𝑥 and 𝑦, is represented in Figure 7.6 and Figure 7.7.

𝑁 = {𝐸}
𝑇 = {𝑥, 𝑦,¬,∧,∨}
𝑅 = {𝐸 → 𝑥, 𝐸 → 𝑦, 𝐸 → ¬𝐸, 𝐸 → 𝐸 ∧ 𝐸, 𝐸 → 𝐸 ∨ 𝐸}
𝐹 = {𝐸}

If both the source and sink sequences of edges are limited to singletons, this sort
of tree acceptor is identical to a string acceptor. The string is then represented such
that the rightmost symbol is the root and preceding symbols are children of their
successors. A unique “start” symbol is added to occupy the leaf slot. This accounts
for the fact that states are assigned from the bottom to the top. Figure 7.8 shows such
a construction.

7.3 Decisions and Operations
This section discusses decision procedures and automaton operations from the graph-
based perspective. Concrete implementations are provided for some of the less trivial
algorithms. Traditionally, tree automata operate over a ranked alphabet. The rank of a
symbol can be inferred from the edges in the graph structure, although one should be
careful to retain this information for symbol/rank pairs with no corresponding edges
if the transition function is partial. All of these are straightforward generalizations

106

start

𝑏
0

𝑎
0

𝑏
0𝑎

0

Figure 7.8: The string acceptor of Figure 7.2 as an ordered directed hypergraph.
The two are identical, except that this version has additional labels for the sequence
indices, which are always zero.

of known algorithms for string acceptors, possibly after first reducing the ordered
directed hypergraph to a simpler structure.

7.3.1 Reachability and Satisfiability
One of the questions that one may ask of a grammar is whether it is consistent, if there
are any structures that satisfy it. The view of a tree acceptor as an ordered directed
hypergraph yields an efficient test for finite-satisfiability of a given tree language 𝐿:
there exists a tree in 𝐿 iff there is some accepting state that is reachable. Reachability
needs little information: all label information may be discarded, including both the
sequence indices and the symbol labels. Then, a dynamic programming algorithm
for deciding this question is as follows. If a node is the sink of an edge which has no
sources, then that node is reachable. Once these are accounted for, one can iterate
considering the following: if a node is the sink of an edge which has only reachable
sources, then that node is reachable. Eventually, no updates will occur to the set of
known-reachable nodes. At that point, everything not yet known to be reachable is
unreachable. If any accepting state is reachable, then the dbfta is satisfiable by a
finite tree.

A dbfta is reduced iff all of its states are reachable. To reduce a nonreduced
dbfta, simply remove all unreachable states as well as the edges to which they
connect. Satisfiability is checking that the returned set of final states is nonempty.

7.3.2 Determinization
Sometimes one may be presented with a graph that represents not a deterministic
function, but a nondeterministic relation. Because each edge has exactly one sink,
the Rabin-Scott powerset construction (Rabin and Scott, 1959) applies to these tree
automata in much the same way as to more typical string acceptors. Given a tree
automaton with state set 𝑄 and transition relation 𝑅, proceed as follows. For each

107

a b S S S S S S

A 0 1 0 0 2 2
B 1 0 2 2 0 0

AB 1 1
BA 1 1

Figure 7.9: A nonminimal dbfta. Set braces are omitted.

symbol 𝑥 which labels an edge with 𝑛 sources2 and for each possible sequence 𝑎 of
length 𝑛 over P(𝑄), construct an edge as follows:

𝛿(𝑥, ⟨𝑎1, . . . , 𝑎𝑛⟩) = {𝑞 : (𝑥, ⟨𝑞1, . . . , 𝑞𝑛⟩, 𝑞) ∈ 𝑅 and 𝑞𝑖 ∈ 𝑎𝑖}.

Rather than constructing the entire powerset of states however, it is best to begin
with the leaves and construct their corresponding states, then iteratively add edges
considering only the states that exist so far. Eventually, no new states will be added,
and a deterministic equivalent will have been constructed.

7.3.3 Minimization
Like Comon et al. (2007), this section describes dbfta minimization in terms of the
Myhill-Nerode theorem for trees. The following algorithm operates only on reduced
deterministic automata. Similar to the string case, a table must be constructed with
one fewer row and column than there are states. The table will be filled with partial
derivations which distinguish the states. A first approximation of the partition, which
will later be refined, says only that accepting states are distinct from rejecting states.
Consider the dbfta of Figure 7.9. It has four states, so the minimization table
should have three rows and columns:

B
AB ⃝ ⃝
BA ⃝ ⃝

A B AB

In this example, only two pairs of states remain undistinguished at this point. Next,
to determine if states 𝑝 and 𝑞 are distinct, consider each symbol 𝑥 that labels an edge
with 𝑛 sources. For each sequence 𝑎 of length 𝑛 − 1 and for each 0 ⩽ 𝑖 < 𝑛, consider
the outcome of the transition 𝛿(𝑥, ⟨𝑎0, . . . , 𝑎𝑖−1, 𝑝, 𝑎𝑖, . . . , 𝑎𝑛−1⟩) and that of the
transition 𝛿(𝑥, ⟨𝑎0, . . . , 𝑎𝑖−1, 𝑞, 𝑎𝑖, . . . , 𝑎𝑛−1⟩). If the resulting states are known to be
distinguishable, then 𝑝 and 𝑞 are also distinguishable. Here we see that states A and

2In other words, for each symbol 𝑥 of rank 𝑛.

108

a b S S S S

[A] 0 1 0 2
[B] 1 0 2 0

[AB] 1 1

Figure 7.10: A minimal form of Figure 7.9.

B are distinguished by 𝑥 = S and 𝑎 = ⟨A⟩. Specifically 𝛿(S, ⟨A,A⟩) is undefined
(and thus rejecting) while 𝛿(S, ⟨A,B⟩) = AB (and accepting). No such sequence yet
suffices to distinguish AB from BA, however:

B
S

A ⃝

AB ⃝ ⃝
BA ⃝ ⃝

A B AB

After another iteration, nothing changes. The states AB and BA are still not
distinguishable, and no further updates can be made. All distinguished pairs are
now known, and the partial trees stored in the table can help in constructing the
distinguishing examples. If there is no need to find such an example, it suffices to
simply store a mark in the cells representing distinguishable pairs.

Minimization involves merging these indistinguishable states. For each state 𝑞𝑖,
construct a state [𝑞𝑖] labeled by the set of states equivalent to 𝑞𝑖 itself. Then for each
edge, replace each state 𝑞 in its sequence of sources and of sinks by its equivalence
class. In this example, [AB] = [BA] = {AB,BA}, and all other classes are singleton.
The minimal acceptor then is shown in Figure 7.10.

7.3.4 Completion and Trimming
A dbfta is complete iff every 𝑛-source edge is attached to every possible sequence
of 𝑛 edges. A dbfta is trim iff every state has some usable path to an accepting
state. A path is usable iff every source of every edge along the path is reachable. To
complete an automaton whose state set is 𝑄, find all symbols 𝑥 that label edges of 𝑛
symbols, and find all sequences 𝑎 of length 𝑛 over 𝑄 ∪ {⊥}, where ⊥ is some new
state. Construct a new transition function

𝛿′(𝑥, 𝑎) =
{
𝛿(𝑥, 𝑎) if it is defined,
⊥ otherwise.

If the automaton was already complete, then ⊥ will be unreachable. Reduce the

109

A B

⊥
⃝? ⃝?

⃝?

↦→

⃝? ⃝? ⃝? S S S S S S S S

A ? ? 0 1 2 01 02 12 012
B ? ? 012 12 02 01 2 1 0
⊥

Figure 7.11: Instantiating ⃝? for a rank-3 S.

resulting automaton so that ⊥ is not inserted unnecessarily. One may note that this
only completes the automaton with respect to the supplied ranked alphabet. Several
trees still have no path in the resulting automaton. In the case of string acceptors,
one may work around this by adding edges labeled by some special symbol, ⃝? ,
which represents all symbols not in the alphabet (Hulden, 2009; Lambert and Rogers,
2020). The same applies in the case of tree acceptors, but there are significantly
more of them. In order to account for universal completion, an edge on ⃝? should be
attached from every set of states to ⊥, including the empty set. Semantically adding
a symbol/rank pair ⟨𝑥, 𝑟⟩ to the alphabet requires duplicating and instantiating all
such edges whose source sets have size bounded below by 1 and above by 𝑟 to every
possible surjective map from the first 𝑟 natural numbers onto this source set. An
example is shown in Figure 7.11.

The simplest way to trim a dbfta is to first minimize and reduce it. All states
lacking a path to an accepting state will be merged into a single state, as nothing can
distinguish them. If a state lacks a path to an accepting state, then all of its usable
out-edges leads to another such state. Because the dbfta is minimal, that means
these are self-loops. Thus trimming a minimal, reduced dbfta involves inspecting
the rejecting states in search of one which is the sink of all its out-edges. Then
remove that state and all edges attached to it.

7.3.5 Finiteness
The language of a reduced, trimmed automaton is finite iff there are no cycles.
Similar to the test for emptiness, the finiteness decision problem can be checked

110

S R T

1 0

10

T

S

𝑎 ↦→ R
S

T

Figure 7.12: A dbfta and its associated connection graph.

using a structure with reduced information capacity. Only a standard digraph is
needed. Given the ordered directed hypergraph representation of a reduced, trimmed
dbfta, construct a connection graph as follows. Remove all state parity information.
Replace each hyperedge of 𝑛 sources with 𝑛 edges, connecting each source to the sink.
The resulting graph has cycles iff the original structure did as well. Reducedness is
required to guarantee that all edges are traversable, and trimness removes the rejecting
sink and its associated loops. Figure 7.12 shows a dbfta and its connection graph,
each of which has a clearly visible cycle of length two. The advantage of using the
connection graph is that cycle search in graphs is already commonly implemented.

7.3.6 Boolean Operations
The complement of a complete dbfta is found by swapping the parity of each state.
All rejecting states become accepting, and all accepting states become rejecting.
Note that this is really only a complement relative to the set of all trees over the
specified ranked alphabet, and that there exist trees that are in neither the represented
tree language nor its complement due to containing symbol/rank pairs outside of this
alphabet. The same caveat applies to string acceptors and the same workaround is
useful: completion with ⃝? edges. Barrero (1991) proves that tree acceptors cannot
represent the complement of an unranked tree language, but the ⃝? edges essentially
act as infinitely many edges, bypassing this restriction.

The union of two tree automata is even simpler than the complement. The
simplest construction is the same as for string acceptors. If each is represented
by a graph, then both graphs together, with no connections at all between them,
suffice to give a nondeterministic representation of their union. If either has edges
on ⃝? , they should be instantiated as necessary such that both graphs operate over
the same ranked alphabet. The resulting disconnected graph can be determinized,
minimized, and trimmed if desired, but as noted by Heinz and Rogers (2013) it
may often be preferable to leave Boolean combinations in this factored state. The
simplest implementation of intersection involves application of De Morgan’s laws:
𝐴 ∩ 𝐵 = ∁(∁𝐴 ∪ ∁𝐵). Unfortunately, complementation requires determinism, but

111

the factored union representation is nondeterministic. So there is no intrinsic factored
representation of intersections.

Alternatively, the union and intersection can be represented by the product
construction. Provided are two tree acceptors A𝑖 = ⟨Σ𝑖, 𝑄𝑖, 𝛿𝑖, 𝐹𝑖⟩ for 𝑖 ∈ {1, 2}.
For each symbol 𝑥 of rank zero, construct a state ⟨𝑞𝑎, 𝑞𝑏⟩, where 𝑞𝑎 = 𝛿1(𝑥, 𝜀) and
𝑞𝑏 = 𝛿2(𝑥, 𝜀). Construct an edge from 𝜀 to ⟨𝑞𝑎, 𝑞𝑏⟩. Then iterate as follows. Let 𝑄
represent the set of states generated so far. Then for each symbol/rank pair ⟨𝑥, 𝑟⟩ and
for each sequence 𝑠 of length 𝑟 over 𝑄, let ⟨𝑢𝑖, 𝑣𝑖⟩ = 𝑠𝑖 and construct a state ⟨𝑞𝑎, 𝑞𝑏⟩
where 𝑞𝑎 = 𝛿1(𝑥, 𝑢) and 𝑞𝑏 = 𝛿𝑏 (𝑥, 𝑣). Construct an edge from 𝑠 to ⟨𝑞𝑎, 𝑞𝑏⟩, and
repeat. Eventually no new states will have been created, and the necessary portion
of the product is generated. For the union, the accepting states are those where
either component of the labeling pair is accepting in its associated acceptor. For the
intersection, both components must be accepting. Continuing a recurring theme, this
is the same algorithm as for string acceptors, except that it has to account for all
possible sequences of sources rather than considering only a single state at a time.

7.4 Conclusions
This chapter introduced a novel generalization of hypergraphs which allows a direct
encoding of a finite-state tree acceptor in a graph-like structure. Decision problems
and Boolean operations are interpreted with respect to these structures, in some
cases by reducing them to simpler structures. The meaning of complementation
was discussed, and a solution implemented to guarantee that all possible trees exist
are accepted by either a dbfta or its complement. The framework allows for
reinterpretation of finite-state string acceptors as tree acceptors without change. As
many classes of string languages are characterized by graph-theoretic properties
(Caron, 2000), this new representation as well as the simpler forms discussed
throughout the chapter may pave the way for effectively characterizing tree languages
by the same kinds of mechanisms.

112

8: ACCUMULATORS AND THE PROBLEMS THEY BRING

Some have expressed interest in describing certain phenomena using semirings
(Mohri, 1997; Lothaire, 2005; Roark and Sproat, 2007). These are essentially finite-
state acceptors augmented with a monoidal accumulator. This chapter discusses the
expressive power of such a structure. First I show that a cky-style chart parse can
be expressed as a monoid. Then I generalize, demonstrating that a run of a Turing
machine can also be expressed as a monoid. In order to maintain a truly finite amount
of state, one may demand the use of a finite monoid, but, as will be explained, this
restriction disallows even the identity function. A fundamental question remains:
what kinds of restrictions should a monoidal accumulator satisfy? In short, this
formalism gives us unrestricted power, so if we want to produce a typologically
predictive theory, what must we be wary of?

8.1 Parsing as a Monoid
Originally published by Ichirō Sakai (Sakai, 1962) and later rediscovered by John
Cocke (Hays, 1962), Tadao Kasami (Kasami, 1966), and Daniel Younger (Younger,
1967), the cky algorithm (named for the latter trio) is a cubic-time bottom-up
dynamic programming parser for context-free grammars. This section describes the
algorithm in terms of a monoid. Readers already familiar with such a treatment may
wish to skip this section.

A context-free grammar (a type 2 phrase-structure grammar) is a system of
rewrite rules, consisting of a set of terminal symbols (words), nonterminal symbols,
and rules that transform nonterminal symbols into a sequence of zero or more
symbols of either variety (Chomsky, 1956, 1959). They are called “context-free”
because a type 1 (“context-sensitive”) grammar allows rules to apply only in given
contexts.

For notation here, nonterminal symbols are represented by (sequences of) capital
letters and terminals by anything else. A rule is written 𝐴 → 𝑤, where 𝐴 is the
nonterminal being rewritten and 𝑤 is the output sequence.

Consider the grammar with terminals ‘(’ and ‘)’, nonterminal S, and rules S→ (),
S → SS, and S → (S). It generates the Dyck language of balanced parentheses
such as “()”, “()()”, “(())”, etc. This is equivalent (in terms of string yield) to a
grammar with the same terminals but a larger set of nonterminals, {S,T,L,R}, and
the following set of rules: S→ LR, S→ SS, S→ LT, T→ SR, L→ (, and R→).
Figure 8.1 shows some sample parses with this latter grammar. It has a few features
that make processing easier.

113

This second grammar is in a special form known as Chomsky Normal Form,
where a nonterminal rewrites to either a single terminal or a sequence of exactly
two nonterminals. Any context-free grammar can be written in this form. This
arrangement lends itself nicely to a divide-and-conquer style of algorithm. The
grammar used in subsequent examples is:

S → DP VP D → the
DP→ DP PP NP→ binoculars
DP→ D NP NP→ crow
PP → P DP NP→ girl
VP→ VP PP P → with
VP→ V DP V → saw

For a sentence of 𝑛 words, parsing occurs in an upper-triangular 𝑛-dimensional
matrix whose rows are numbered from zero and whose columns are numbered from
one. Concretely, consider the sentence “the girl saw the crow”. Indices are placed
between words, with 0 at the start of the sentence and 𝑛 after word 𝑛. Figure 8.2
shows the structure of the matrix.

The cells along the main diagonal correspond to single words. If a nonterminal
𝑁 can rewrite to that word 𝑤, then a tree 𝑁 → 𝑤 is placed in that cell. These have
also been filled in (denoted only by 𝑁) in Fig. 8.2.

For any other cell, the span from 𝑖 to 𝑘 that it represents can be split in a number
of ways. For all 𝑗 where 𝑖 < 𝑗 < 𝑘 , it can be split into a region spanning 𝑖 to 𝑗 and
one spanning 𝑗 to 𝑘 . The highlighted cell spanning 2 through 5 in Fig. 8.2 can split
into 2–3 and 3–5, or into 2–4 and 4–5. For each tree 𝑇1 in the cell corresponding
to the left region and for each 𝑇2 in the right region, the roots of 𝑇1 and 𝑇2 will be
nonterminals 𝑁1 and 𝑁2. If there is a rule rewriting 𝑁 to 𝑁1𝑁2 for some nonterminal
𝑁 , then a tree 𝑁 → 𝑁1, 𝑁2 is placed in that cell. If no such rules exist, then the cell
must remain empty. Figure 8.3 shows the entire table filled.

Cells are not limited to a single entry. Some sentences offer more than one
valid parse, and the result will be a forest of possible interpretations. Consider the

() ()
L R L R
S S

S

(

()
)

L

L R
RS

T
S

Figure 8.1: Parses for “()()” and “(())”.

114

0

1

2

3

4

5

D

NP

V

D

NP

Figure 8.2: Basic shape of the parsing matrix for “0the1girl[2saw3the4crow5]”. The
cell in row 2, column 5 is highlighted and corresponds to the bracketed region of the
input from index 2 to 5.

0

1

2

3

4

5

D

NP

V

D

NP

DP

DP

VP

S

Figure 8.3: Parsed “0the1girl2saw3the4crow5”.

115

0

1

2

3

4

5

6

7

8

D

NP

V

D

NP

P

D

NP

DP

DP

VP

S

DP

PP

DP

VP/VP

S/S

Figure 8.4: Parsed “0the1girl2saw3the4crow5with6the7binoculars8”.

sentence “the girl saw the crow with the binoculars”, shown parsed in Figure 8.4.
After having parsed the three additional words into their own structure, their matrix
can be adjoined diagonally to the earlier structure. Only for the newly formed cells
where the rows from the left portion and columns from the right meet, highlighted
in the figure, is there work to be done. There are two instances of VP in the cell
spanning 2–8, because both the 2–3/3–8 (V DP) split, representing the case where
the crow has binoculars, and the 2–5/5–8 (VP PP) split, where the girl has binoculars,
are valid interpretations of the sentence. For the same reason, there are two instances
of S in the upper right cell. Note that the S from 0–5 no longer represents a valid
parse of the sentence, as this span does not contain the entirety of the sentence. We
can see then that any given cfg has a parsing monoid associated with it: these upper
triangular matrices are the elements, and the operation is the act of combining them

116

as was done here.
The preceding portion describes the use of a standard grammar. Weighted or

stochastic grammars may be used with only a slight modification. Along the main
diagonal, the weight assigned to the tree is exactly the weight of the rule that generated
it. In the other cells, the weight is an appropriate combination of the weights of
the subtrees with that of the generating rule. This combination might be a product
(Smith and Johnson, 2007) or a sum (Katsirelo et al., 2008). The parsing monoid is
formed exactly as before, with the elements being the matrices and the operation
being the act of diagonally adjoining them then filling in the newly created cells.

A finite-state machine with a single state and a monoidal accumulator is thus
sufficient to parse context-free languages. Each input symbol loops back to this
same state while outputting a single-cell parse chart, and the accumulator dutifully
builds the table as per the monoid operation. One may object that the size of the
structure within the accumulator grows quadratically with the size of the input,
and this complaint would be well-founded. The infinitely many states needed to
decide well-formedness of the context-free string language have been pushed into
the monoid.

8.2 Going Further: Turing Completeness
Recall that a monoid is a set 𝑆 equipped with an associative total function♢ : 𝑆×𝑆 → 𝑆,
where some element 𝑒 ∈ 𝑆 is an identity for ♢, i.e. for all 𝑥 ∈ 𝑆, it holds that
𝑒 ♢ 𝑥 = 𝑥 = 𝑥 ♢ 𝑒. Given a function 𝑓 : 𝐵× 𝐴→ 𝐵, an initial value 𝑏, and a sequence
𝜎 of elements of 𝐴, the function that computes the following:

𝑓 (. . . 𝑓 (𝑓 (𝑏, 𝜎1), 𝜎2) . . . , 𝜎𝑛)

is a left-fold, denoted foldl. Here I show that for any such 𝑓 , a new function □ can
be constructed such that □ is a monoid operation.

Suppose we are given a function 𝑓 : 𝐵 × 𝐴→ 𝐵. The two types need not be the
same, so it is clear that the function need not be associative. Consider new unit types
𝐿, 𝑁 , and 𝑅 and construct a new aggregate type:

𝐶 =
(
𝐿 × 𝐵

)
∪ 𝑁 ∪

(
𝑅 × 𝐴

)
.

We can then define a function 𝑔 : 𝐶 → 𝐶:

𝑔(𝑥, 𝑦) =

⟨𝐿, 𝑓 (𝑏, 𝑎)⟩ if 𝑥 = ⟨𝐿, 𝑏⟩, 𝑦 = ⟨𝑅, 𝑎⟩
𝑦 if 𝑥 = 𝑁

𝑥 otherwise.

117

Then we have that 𝑔(𝑁, 𝑐) = 𝑐 = 𝑔(𝑐, 𝑁), or in other words 𝑁 is an identity for 𝑔.
Then we have a set 𝐶 and a binary operation over that set with an identity. The only
thing missing is a guarantee of associativity. But no matter. Let us finally define yet
another function □ : ([𝐶] × 𝐶) × ([𝐶] × 𝐶) → ([𝐶] × 𝐶) as follows:

𝑎 □ 𝑏 =

𝑏 if 𝑎 = ⟨∅, 𝑁⟩
𝑎 if 𝑏 = ⟨∅, 𝑁⟩
⟨𝑥 + 𝑦, foldl(𝑔, 𝑁, 𝑥 + 𝑦)⟩ 𝑎 = ⟨𝑥, 𝑐⟩, b=⟨𝑦, 𝑑⟩.

The pair ⟨∅, 𝑁⟩ is an identity for □. Then for both of 𝑎 □(𝑏 □ 𝑐) and (𝑎 □ 𝑏) □ 𝑐,
the first element of the resulting tuple (which represents an ordered list of seen
elements) is identical, and the other element is computed from that alone. So we
have a set ([𝐶] × 𝐶) with an associative total binary operation (□) and an identity
(⟨∅, 𝑁⟩). Thus we have a monoid.

Then an automaton with a single monoid-type accumulator is enough to compute
any fold: there is a single state whose start-edge is labeled with a pair of the form
⟨[⟨𝐿, 𝑖⟩], ⟨𝐿, 𝑖⟩⟩ and all other edges (and the termination output) are labeled with
either ⟨∅, 𝑁⟩ or pairs of the form ⟨[⟨𝑅, 𝑥⟩], ⟨𝑅, 𝑥⟩⟩. The monoid operation is of
course the □ derived from the intended fold function. Computing right-folds instead
of left-folds requires only minor modification.

Thus a finite-state machine with a monoidal accumulator and just a single state
can express any fold. Just like with parsing, all of the state information is pushed
into the monoid. And it should be noted that an infinite monoid is generated in the
process which enforces associativity, remembering the entire input as it progresses.
A run of a Turing machine can be expressed in this way: collect the input, and run
the intended Turing machine over the collected input.

Restricting ourselves to finite monoids certainly reduces the computational power,
as the input can no longer be remembered. However, Σ∗ is an infinite monoid, so even
the identity transformation is no longer representable under such a harsh restriction.

8.3 Conclusions
The semiring-based analysis of transduction discussed by Lothaire (2005) and by
Roark and Sproat (2007) is elegant in its simplicity, but when unrestrained it produces
unlimited computational power (Hutton, 1999). This analysis was designed to unify
acceptors and transducers, but a restriction to finite monoids prevents defining even
the most trivial of transductions. Perhaps the types of monoids allowed should be all
and only those whose operations are computable with a finite-state machine, but this
would include these machines, so we have to be careful not to accidentally allow for,
say, all primitive recursive functions.

118

9: THE LANGUAGE TOOLKIT

This dissertation has extended the piecewise-local subregular hierarchy, adding a
branch for relativized locality (tier-based classes) as well as incorporating classes
characterized by various fragments of formal logics. This chapter in particular
describes a software package implementing the tools discussed throughout this work
for constructing, classifying, factoring, and learning formal languages. All of the
software discussed in this chapter is written in Haskell, and the language toolkit
(ltk) core that forms the foundation of it all is a general-purpose library, available
at https://hackage.haskell.org/package/language-toolkit.

We open with discussion of the pleb language, used for constructing formal
languages based on containment of factors. Next, we look at features of the inter-
active theorem-prover built upon this library, the pleb interpreter (plebby). This
includes visualization, classification, and grammatical inference. The classification
algorithms are also available in a stand-alone program, classify. Another program,
factorize, allows one to automatically extract some types of constraints from
provided patterns. Finally we discuss some other companion software.

9.1 Construction: The PLEB Language
The Piecewise-Local Expression Builder, pleb, is a description format for formal
languages. A pleb file defines a language (a set of strings) by a logical expression,
and may also define named sets of symbols or named expressions. The language is
powerful enough to define any language that a finite-state automaton can describe,
but its design centers around the subset of these languages in which the set of factors
that occur in a word is sufficient information to determine whether that word is in the
language.

9.1.1 Basic Syntax
Whitespace, ⟨ws⟩ is ignored everywhere except within tokens or where it is explicitly
mentioned in the grammar. Comments are treated as whitespace.

⟨comment⟩ := ‘#’ [⟨non-newline⟩ . . .] ⟨newline⟩

A file (program) is a non-empty sequence of statements. When using the ltk
core function LTK.Porters.Pleb.readPleb to evaluate a program in the ltk
core, the result is the value of the special variable it. This is generally the final
bare expression (if any). In the case that it has no value, this method of evaluation

119

https://hackage.haskell.org/package/language-toolkit

returns an error. The resulting automaton (if any) is constructed with respect to the
alphabet described by the special variable universe, which collects all symbols
used throughout the file.

⟨program⟩ := ⟨statement⟩ [⟨statement⟩ . . .]

A statement is either an expression or an assignment of either a symbol set or an
expression.

⟨statement⟩ := ⟨sym-assign⟩ | ⟨exp-assign⟩ | ⟨exp⟩
⟨sym-assign⟩ := ‘=’ ⟨name⟩ ⟨symbols⟩
⟨exp-assign⟩ := ‘=’ ⟨name⟩ ⟨exp⟩

An expression comes in one of three types. It can be a variadic expression (with
an operator that takes multiple arguments), a monadic expression (with an operator
that takes a single argument), or a factor. Additionally it can be the name of a defined
subexpression.

⟨exp⟩ := ⟨name⟩ | ⟨variadic⟩ | ⟨monadic⟩ | ⟨factor⟩
⟨variadic⟩ := ⟨v-op⟩ ‘{’ ⟨exp⟩ [‘,’ ⟨exp⟩ . . .] ‘}’

| ⟨v-op⟩ ‘(’ ⟨exp⟩ [‘,’ ⟨exp⟩ . . .] ‘)’
⟨monadic⟩ := ⟨m-op⟩ ⟨exp⟩

Factors are a bit more complicated. Most forms are enclosed in angle brackets
(U+27E8 and U+27E9). The basic form of a factor is a sequence of symbol sets
separated by ⟨r-op⟩, which can be either ⟨ws⟩ for adjacency, or ‘,’ for (long-distance)
precedence. Additionally, a factor can be either free (without anchors) or anchored
to one or both of the head or tail of a string. Finally, a factor can be the name of a
factor-type variable.

⟨factor⟩ := ⟨name⟩
| [⟨anchors⟩] ‘⟨’ [⟨symbols⟩ [⟨r-op⟩ ⟨symbols⟩ . . .]] ‘⟩’
| ‘.⟨’ ⟨factor⟩ [‘,’ ⟨factor⟩ . . .] ‘⟩’
| ‘..⟨’ ⟨factor⟩ [‘,’ ⟨factor⟩ . . .] ‘⟩’

The first compound kind of factor combines its sub-factors with the adjacency
relation, and the other with the (long-distance) precedence relation. The anchors are

120

denoted as follows:

⟨anchors⟩ := ⟨head-tail⟩ | ⟨head⟩ | ⟨tail⟩
⟨head-tail⟩ := ‘⋊⋉’
⟨head⟩ := ‘⋊’
⟨tail⟩ := ‘⋉’

Note that ⟨head-tail⟩ is a single token; no whitespace may occur within the ‘⋊⋉’
sequence (in particular, not between ⋊ and ⋉).

As described previously, the relation operators, ⟨r-op⟩, in a ⟨factor⟩ can be
either whitespace to represent the adjacency relation, or a comma to represent the
(long-distance) precedence relation.

⟨r-op⟩ := ⟨ws⟩ | ‘,’

The pleb language uses the alphabet-agnostic automata of Chapter 3 internally
to specify factors, using the ⃝? symbols to preserve the semantics of the construction.
For this reason, they are also called semantic automata. When combined, the
alphabets are semantically extended to be compatible, with missing symbols being
placed in parallel to the ⃝? transitions. For this reason, a constraint needs only
mention the symbols about which it cares.

Symbol sets are defined by the following syntax:

⟨symbols⟩ := ‘{’ ⟨symbols⟩ [‘,’ ⟨symbols⟩ . . .] ‘}’
| ‘(’ ⟨symbols⟩ [‘,’ ⟨symbols⟩ . . .] ‘)’
| ‘[’ ⟨symbols⟩ [‘,’ ⟨symbols⟩ . . .] ‘]’
| ‘/’ ⟨name⟩
| ⟨name⟩

The first and second of these, using curly braces or parentheses, denote the union
of the contained symbol-expressions. The third, using square brackets, indicates an
intersection. The fourth, denoted by ‘/’ is a singleton set where the ⟨name⟩ is the
symbol itself. And finally, the fifth option is a variable name that must refer to an
already-bound symbol set.

A name is a letter as defined by Unicode followed by any sequence of characters
other than whitespace or characters from the following set:

, [] () { } < > ⟨ ⟩

121

Note that the ‘#’ character is valid in a name, so a comment must be separated from
a name by a space.

9.1.2 Variadic Operators
A variadic operator is an operator which can take any number of arguments and can
be any of the following. The operators are described in Unicode here, but ascii
equivalents are given in a table at the end of this section.∧

(U+22C0) The set intersection (logical conjunction) of the operands.∨
(U+22C1) The set union (logical disjunction) of the operands.

•• (U+2219 U+2219) The gapped-concatenation of the operands, equivalent to
normal concatenation except that arbitrary strings may be inserted between
the operands.

• (U+2219) The concatenation of the operands. Note that nonanchored ends
of factor-expressions automatically allow arbitrary strings to occur, so this
concatenation may not be what one expects. Notably, •(⟨/a⟩, ⟨/b⟩) is not
“words that contain an ab substring”, but rather “words that contain an ab
subsequence”, as arbitrary text may intervene between the nonanchored “a”
and “b” factors. It may be better to use the .⟨. . .⟩ form when concatenating
factors in this way.

\\ Left-quotients of the operands, associating to the left. The left-quotient 𝐴\𝐵
is the set of strings that can be appended to strings in 𝐴 to get a string in 𝐵, a
generalization of the Brzozowski derivative.

// Right-quotients of the operands, associating to the right. The right-quotient
𝐵/𝐴 is the set of strings that can be prepended to strings in 𝐴 to get a string in
𝐵.

9.1.3 Monadic Operators
This section describes the monadic relations just as the previous described the
variadic ones. Note that the word “monadic” is used in the sense of apl or formal
logic, referring to a function of a single argument, rather than the sense of Haskell,
which refers to the category-theoretic structures.

¬ (U+00AC) The logical negation of the operand. Equivalent to its set complement.

∗ (U+2217) The iteration closure of the operand, sometimes called the Kleene
closure. Allow it to occur zero or more times. This has the same caveat as

122

Table 9.1: Equivalent ascii syntax for pleb.
Unicode ASCII

⋊ %|
⋉ |%
⟨ <
⟩ >∧

/\∨
\/

•• @@
• @
¬ ! or ~
∗ *
↓ $

the concatenation operator: factor-expressions that are not fully anchored may
have arbitrary strings at the non-anchored ends.

↓ (U+2193) The downward closure of the operand. Accept all and only those
strings that can be formed by deleting zero or more symbols from a string
accepted by the operand.

[] “Tierify”:
‘[’ ⟨symbols⟩ [‘,’ ⟨symbols⟩ . . .] ‘]’

The symbols defined by the ⟨symbols⟩ components specify a tier on which
the operand should occur. This returns the preprojection of the operand: the
largest language that when projected to the given tier is equal to the operand.

9.1.4 Remarks
The pleb language contains a mechanism for describing words. For example,
⋊⋉⟨/a /b⟩ is the single word “ab”. It also allows finite unions with

∨
, concatenations

with •, and the Kleene star with ∗. These are the defining operations on regular
languages, and therefore any regular language is expressible as a piecewise-local
expression. Further because expressions are internally represented as finite automata,
every piecewise-local expression represents a regular language. The two are
expressively equivalent. Provided in the software distribution is a major mode for
the gnu Emacs text editor that covers syntax highlighting and entry of the Unicode
operators. However, ascii equivalents are available and described in Table 9.1.

The fact that automata preserve their semantics is meaningful. Consider the

123

a
b

⃝?

a

⃝?a b

∧{⋊⟨a⟩,⋉⟨b⟩,¬⟨a, a⟩,¬⟨b, b⟩}
a

b
a

•(⋊⋉⟨a b⟩, ∗⋊⋉⟨a b⟩)

a

⃝?
b

⃝?

a

⃝?

[a, b]∧{⋊⟨a⟩,⋉⟨b⟩,¬⟨a, a⟩,¬⟨b, b⟩}
Figure 9.1: Three definitions for one language over Σ = {a, b}, and semantics.

language defined over Σ = {𝑎, 𝑏} where words begin on “a”, end on “b”, and “a”
alternates with “b”. Figure 9.1 shows three different ways of defining this. If this
were a constraint embedded into a larger alphabet, any symbols other than “a” or “b”
would follow the ⃝? transitions.

9.2 Interacting with the Interpreter
The Piecewise-Local Expression Builder Interpreter, plebby, is an interactive
theorem-prover for subregular logics. It reads and evaluates single-line pleb
expressions and provides various commands that one can use to explore and interact
with languages. A bare expression is automatically assigned to the special expression-
variable it, and used symbols are automatically accumulated in the special symbol-
variable universe. All interpreter-commands begin with a colon, and must be the
very first thing on the line.

9.2.1 Interpreter Basics
• :quit

Exit the interpreter. On a unix system, Ctrl+D does the same thing.

• :help
Print an alphabetical list of commands and descriptions.

9.2.2 Saving and Loading
• :savestate ⟨file⟩

Write the current state to ⟨file⟩.

• :writeATT ⟨file⟩ ⟨file⟩ ⟨file⟩ ⟨exp⟩
Write an at&t tabular format automaton representing ⟨exp⟩ to the three ⟨file⟩
arguments, which represent the transitions, input symbols, and output symbols,
respectively. If _ is given as the name of a symbol table, then that table is not
written. The input and output tables are identical, so writing both is redundant.

124

• :write ⟨file⟩ ⟨exp⟩
Write a binary form of ⟨exp⟩ to ⟨file⟩.

• :loadstate ⟨file⟩
Restore a state previously written by :savestate from ⟨file⟩.

• :readATT ⟨file⟩ ⟨file⟩ ⟨file⟩
Read an at&t tabular format transducer from the three ⟨file⟩ arguments
(transitions, input symbols, and output symbols), and store the input-projection
of the result in the special variable it. If _ is given as the name of a symbol
table, then no file is read for that table.

• :readATTO ⟨file⟩ ⟨file⟩ ⟨file⟩
Equivalent to :readATT except that it is the output-projection that is stored.

• :readBin ⟨file⟩
Read a binary format expression from ⟨file⟩ and store the result in the special
variable it.

• :readJeff ⟨file⟩
Read an automaton file in Jeff format from ⟨file⟩ and store the result in the
special variable it. This will never result in an alphabet-agnostic constraint
automaton. In other words, adding to the alphabet has no effect on whether a
word is accepted by the resulting automaton, because it is always in ground
form.

• :read ⟨file⟩
Read ⟨file⟩ as a pleb program, assimilating all bindings. If there are any bare
expressions, the last one is assigned to the special variable it.

• :import ⟨file⟩
Read ⟨file⟩ one line at a time as if its contents had been typed into the interpreter.
Specifically this means that each statement must be entirely on one line, and
some lines may be interpreter commands (including :import itself).

9.2.3 Determining the Class of an Expression
The commands in this section determine whether a given expression is in the
corresponding class with respect to the current universe. Symbols used in the
expression and symbols in the special variable universe are the only ones considered
in making this decision. The list is given in alphabetic order, along with a brief
description of what the class is and what other names, if any, it has. Most of these
classes are discussed in full detail in Chapter 4. Figure 9.2 provides a summary

125

Trivial

CB

Acom

PT

FO2

GLT

GLPT

FO2B

SF

Finite

GD

Def RDef

LT

LTTB

LPT LB

FO2S

SL

TGD

TLT

TLTT

TLPT TLB

TSL

SP TDef TRDef

Figure 9.2: Hierarchy of classes for which decision algorithms are provided.

of these classes, showing the containment relations between them. This is nearly
all of the classes of Figure 4.16, augmented with other classes from the traditional
piecewise-local subregular hierarchy which are not complement-closed and thus not
characterized by their syntactic monoids alone, like sl, sp, and tsl .

• :isAcom ⟨exp⟩
Languages whose syntactic monoids are aperiodic and commutative, equivalent
to ⟨1, 𝑡⟩-ltt (Almeida, 1989).

• :isB ⟨exp⟩
Languages whose syntactic monoids are bands (everywhere idempotent).

• :isCB ⟨exp⟩
Languages whose syntactic monoids are idempotent and commutative, equiva-
lent to 1-lt (Brzozowski and Simon, 1973; McNaughton, 1974).

• :isDef ⟨exp⟩

126

Languages characterized by Boolean combinations of permitted suffixes (Perles
et al., 1963; Ginzburg, 1966; Brzozowski and Fich, 1984).

• :isFinite ⟨exp⟩
Finite languages. To test if a language is cofinite, simply test its complement.

• :isFO2 ⟨exp⟩
Languages definable in first-order logic with general precedence restricted to
two variables, fo2 [<] (Thérien and Wilke, 1998). See Chapter 4 for a proof
that these are equivalent to the G-trivial languages discussed by Brzozowski
and Fich (1984).

• :isFO2B ⟨exp⟩
Languages definable in first-order logic with general precedence and per-
symbol betweenness operations, fo2 [<, bet] (Krebs et al., 2020).

• :isFO2S ⟨exp⟩
Languages definable in first-order logic with general precedence and successor,
fo2 [<,◁] (Krebs et al., 2020).

• :isGD ⟨exp⟩
Generalized definite, definable by Boolean combinations over prefixes and
suffixes (Ginzburg, 1966; Brzozowski and Fich, 1984).

• :isGLPT ⟨exp⟩
Generalized locallyJ-trivial. Generalized by the same means as (Brzozowski
and Fich, 1984) applied to lt to obtain glt: 𝑒𝑀𝑒𝑒 isJ-trivial in the syntactic
monoid for all idempotents 𝑒.

• :isGLT ⟨exp⟩
Generalized locally testable in the sense of (Brzozowski and Fich, 1984);
𝑒𝑀𝑒𝑒 = 𝑒 in the syntactic monoid for all idempotents 𝑒. Specifically this is
not generalized locally testable in the sense of (Thomas, 1982), which referred
to what we now call locally threshold-testable.

• :isLB ⟨exp⟩
Locally a band, all subsemigroups are idempotent.

• :isLPT ⟨exp⟩
LocallyJ-trivial. Related to lt and pt, and also a superclass of dot-depth
one (Knast, 1983).

127

• :isLT ⟨exp⟩
Locally testable, a Boolean combination of local factors (McNaughton and
Papert, 1971).

• :isLTT ⟨exp⟩
Locally threshold-testable, named as such by Beauquier and Pin (1989) and
proven to be equivalent to first-order logic with successor by Thomas (1982).

• :isPT ⟨exp⟩
Piecewise testable, defined by Boolean expressions over piecewise factors
(Simon, 1975). Equivalently, languages whose monoids areJ-trivial (Simon,
1975).

• :isRDef ⟨exp⟩
Reverse definite, defined by Boolean combinations of permitted prefixes (Perles
et al., 1963; Ginzburg, 1966; Brzozowski and Fich, 1984).

• :isSF ⟨exp⟩
Star-free, equivalent to first-order logic with general precedence (Thomas,
1982) or languages whose syntactic monoids are aperiodic (Schützenberger,
1965).

• :isSL ⟨exp⟩
Locally testable in the strict sense, also known as strictly local. Languages
defined by a set of forbidden local factors (McNaughton and Papert, 1971). To
test if a language is cosl, simply test its complement.

• :isSP ⟨exp⟩
Piecewise testable in the strict sense, also known as strictly piecewise. The
languages defined by a set of forbidden piecewise factors (Rogers et al., 2010).
To test if a language is cosp, simply test its complement.

• :isTDef ⟨exp⟩
The preprojection of a definite language.

• :isTGD ⟨exp⟩
The preprojection of a generalized definite language.

• :isTLB ⟨exp⟩
The preprojection of a language that is locally a band.

• :isTLPT ⟨exp⟩
The preprojection of a language that is locallyJ-trivial.

128

• :isTLT ⟨exp⟩
The preprojection of a language that is locally testable.

• :isTLTT ⟨exp⟩
The preprojection of a language that is locally threshold-testable.

• :isTRDef ⟨exp⟩
The preprojection of a language that is reverse definite.

• :isTrivial ⟨exp⟩
Either Σ∗ or ∅.

• :isTSL ⟨exp⟩
The preprojection of a language that is strictly local. To test if a language is
cotsl , simply test its complement.

9.2.4 Grammatical Inference
String-extension learning (Heinz, 2010b; Heinz et al., 2012) provides an efficient
mechanism for learning subregular classes. The ltk provides such learners for
only three classes: sl, sp, and tsl . In each case, the desired factor width is given
as a parameter. The tsl learning is accomplished through the sl-reinterpretation
described in Chapter 6. In plebby these are exposed as :learnSL ⟨int⟩ ⟨file⟩, and
similarly for sp and tsl . In each case, words are read from ⟨file⟩, formatted as one
word per line, with spaces between each symbol. An automaton over the desired
factor width is given as output. Symbols not in the data will always be rejected.

9.2.5 Comparing Expressions
• :strict-subset ⟨expr⟩ ⟨expr⟩

Determine whether the first ⟨expr⟩ is a proper subset of the second with respect
to the current universe.

• :subset ⟨expr⟩ ⟨expr⟩
Determine whether the first ⟨expr⟩ is a (not necessarily proper) subset of the
second with respect to the current universe.

• :equal ⟨expr⟩ ⟨expr⟩
Determine whether the first ⟨expr⟩ is equal to the second with respect to the
current universe, i.e. each is a subset of the other.

• :implies ⟨expr⟩ ⟨expr⟩
Equivalent to :subset in every way.

129

9.2.6 Graphical Output
All commands that display graphical output require both a dot and display program
to be accessible, in a path that the system is configured to search. The dot program
must be GraphViz-compatible, and display should accept a png image over the
standard input and display it appropriately. ImageMagick, for example, provides a
reasonable display program.

• :display ⟨expr⟩
Show a normal-form automaton representation of ⟨expr⟩ graphically.

• :eggbox ⟨expr⟩
Show the syntactic monoid associated with the language of ⟨expr⟩ as an
egg-box diagram.

• :psg ⟨expr⟩
Show the powerset graph of a normal-form automaton representation of ⟨expr⟩
graphically.

• :synmon ⟨expr⟩
Show the syntactic monoid associated with the language of ⟨expr⟩ as a Cayley
graph.

9.2.7 Generating Dot Files Without Displaying Them
• :dot ⟨expr⟩

Print the normal-form automaton representation of ⟨expr⟩ as a Dot file.

• :dot-psg ⟨expr⟩
Print the powerset graph of a normal-form automaton representation of ⟨expr⟩
as a Dot file.

• :synmon ⟨expr⟩
Print the syntactic monoid associated with the language of ⟨expr⟩ as a Dot file
representing its Cayley graph.

9.2.8 Operations on the Environment
• :bindings

Print a list of currently-bound variables and their bindings. Because expression
variables have large representations, these representations are omitted from
this listing but can be displayed individually with :show.

• :show ⟨var⟩
Print the current binding of ⟨var⟩, if any, or a message indicating that it is not
bound.

130

• :unset ⟨var⟩
Remove any binding for ⟨var⟩ from the current environment.

• :reset
Eradicate the environment.

• :restore-universe
Set the special variable universe to the symbol set that contains all and only
those symbols used in other bindings in the current environment.

• :compile
Convert all saved expressions into automata, retaining the metadata that allows
the expression to be alphabet-agnostic.

• :ground
Convert all saved expressions into automata, discarding the metadata that
allows the expression to be alphabet-agnostic.

• :restrict
Remove all symbols that are not in the current universe from all current
bindings. This may result in an empty symbol set. Non-satisfiable factors are
uniformly replaced by ¬⟨⟩ for simplicity.

9.2.9 Remarks
Uninterpretable assignments are ignored without warning. This includes uninter-
pretable bare expressions, which are essentially just assignments to it. However,
warnings are provided when attempting to :display or otherwise apply interpreter-
commands to an ill-formed expression.

The plebby interpreter is designed for interactive use, not for batch processing.
For classification tasks, the stand-alone program classify is provided. It takes
as command-line arguments class names (the class suffix of any of the :isclass
commands of plebby), and reads an automaton over the standard input, outputting to
the standard output a summary of containments. The classify program accepts a
few arguments. The -e and -u switches control under which situations the exit status
is “success” — with -u, all classes in question must contain the given pattern, while
a single class is sufficient in other cases. The -a, -A, -j, and -p switches control the
format of the input, being the input-projection of an at&t-format file (the default),
the output-projection of an at&t-format file, a Jeff file, or a pleb file, respectively.
Finally -n and -N determine whether a non-pleb automaton is normalized before
processing; using -N to disable this step is important when classifying transducers
using the output of the companion software discussed later.

131

a
b

c

a

c
b

a

b,c

Figure 9.3: A dfa that can be factored.

9.3 Factoring Patterns
A dfa offers an efficient means of deciding whether a word is in a language, using
linear time and constant space. For the same reasons that one might wish to define
a language via factors using the pleb language, factoring a finite-state automaton
can be quite useful. For example, a factor-based representation might offer insight
regarding how similar two patterns are, or which kinds of constraints apply to an
entire collection of patterns (Lambert and Rogers, 2019)

The factorization algorithms of Rogers and Lambert (2019b) are implemented in
a program called factorize. This program takes one or more at&t-format files
as arguments, and for each file outputs a description of the pattern in a Results
directory, which is created if necessary. Consider the dfa of Figure 9.3. If this is
saved as dfa.att, then factorize dfa.att will create a new file Results/dfa
whose contents are shown in Figure 9.4.

These output files begin with some metadata. The name of the pattern and the
alphabet over which it operates are provided, where the latter is a space-separated
sequence of symbols. Next, a line describes whether the pattern is strictly local.
The remaining k_-lines of the metadata section describe the factor widths needed
for various components of the pattern: strictly local (forbidden substrings), strictly
piecewise (forbidden subsequences), or their complements (disjunctively required
factors). In this example, the strictly local component is obtained with a factor width
of three (it turns out that two is sufficient), while there is an additional component
which is the complement of a strictly piecewise constraint, using a factor width of
two. The zero-widths indicate that a component of that type is not needed.

Five sections remain, and the first four of them describe components that were
automatically extracted. The forbidden substrings form a strictly local superset of
the language. Like the alphabet, factors are listed as space-separated sequences of
symbols. The factors listed are unanchored by default, but may be prefixed by %| or
suffixed by |% to indicate a head-anchored or tail-anchored factor, respectively. Using
both the prefix and the suffix indicates a forbidden word. The forbidden subsequences
are the strictly piecewise component, and anchors are never present there. In this
case, there are no constraints of this type. Required factors are disjunctive within
each section; one of them is required to occur, but not more than that. If both
required substrings and required subsequences are present, then one of each category
is required. Here, the only positive requirement is that a ⟨b, b⟩ factor must occur.

132

[metadata]
name="dfa"
alphabet=a b c
is_sl="no"
k_sl=3
k_sp=0
k_cosl=0
k_cosp=2

[forbidden substrings]
%|b
%|c
%||%
a a
b b
b c
c b
c c
%|a |%

[forbidden subsequences]

[required substrings (at least one)]

[required subsequences (at least one)]
b b

[nonstrict constraints]
complete="yes"
file=

Figure 9.4: The result of factoring Figure 9.3.

133

The factors in these sections are filtered such that a strictly local is favored over
a strictly piecewise component whenever possible. However, the fully-anchored
forbidden substrings (the forbidden words) are not filtered by the required factors.
Forbidding of ⋊⋉⟨⟩ and of ⋊⋉⟨a⟩ here is not strictly necessary.

The final component incorporates other classes of constraints which are not auto-
matically extractable. If a file exists at the relative path Compiled/constraints,
and each line of that file is a path to an at&t-format file, then the files it references
can be used as hypotheses for higher-complexity constraints. If the approxima-
tion formed by the first sections is equal to the target language, then no further
checks are necessary and the factorization is complete. This is denoted here by the
complete="yes" line. If it is not, then the other hypotheses are checked, one at a
time, until either a match is found or the hypotheses run out. In the first case, the
file that created the match is noted and the factorization marked complete. In the
other, no file is listed and the factorization is marked incomplete. There is a program,
make-nonstrict-constraints which populates the current directory with a set
of hypotheses that have been useful in factoring the stress patterns in the StressTyp2
database of stress patterns (Goedemans et al., 2015; Rogers and Lambert, 2019b).

9.4 Companion Software
Neither plebby nor classify can natively handle processes represented as transduc-
ers. Additional software from https://github.com/vvulpes0/transducers
provides filters that can convert a transducer to its corresponding transition monoid,
which can then be classified using classify -N. One must be careful to use the
-N switch to avoid normalization, in order to avoid accidentally classifying the
complexity of the function’s preimage instead of the function itself.

The tmon filter can currently handle only deterministic finite-state transducers
where the inputs are symbols and the outputs are sequences of symbols. Another
module, T2, is in progress to accommodate two-way and nondeterministic machines,
the former of which will require a different file format.

9.5 Conclusions
This chapter introduced the language toolkit (ltk) and its key components plebby,
classify, and factorize, as well as the companion software for dealing with
transducers. All of this software is released under the mit license, with the most
recent version available on Github. Most references to the pleb language have
involved its Unicode syntax, but ascii alternatives are available in Table 9.1.

This software has been used throughout this dissertation to verify class member-
ship of patterns, to verify that classes are distinct, and to arrange visualizations.

134

https://github.com/vvulpes0/transducers

10: CONCLUSIONS

In order to improve our understanding of linguistic structure, I presented here a
unified scheme for classifying regular string sets and finite-state functions both
order-preserving and otherwise. In doing so, I have discussed characterizations and
learning algorithms for the tier-based extensions of classes of formal languages in
the piecewise-local subregular hierarchy and additionally situated into this hierarchy
some classes based on definability in restrictions of first-order logic. Further, I have
discussed the downfalls of a different technique that unifies acceptors and transducers,
showing that these monoidal accumulators can provide unbounded computational
power.

The characterizations of the classes of the piecewise-local subregular hierarchy
provide information regarding the properties of the languages they contain. Language-
theoretic characterizations allow one to prove that a given formal language lies outside
of a class, that the properties may not hold. Of course, such a characterization
can also prove inclusion if the entire language is accessible, but a negative answer
requires only finitely many words to witness an exception. Model-theoretic results
describe the kind of logic required in order to be able to represent a class. These
can easily provide a positive guarantee that a language is in the class, but it may
be more difficult to show that a language cannot be represented in the given form.
Algebraic characterizations based on syntactic semigroups or syntactic monoids
can provide both positive and negative inclusion claims. With these in mind, I
characterized the tier-based extensions of the classes of the piecewise-local subregular
hierarchy language-theoretically, model-theoretically, and algebraically. Because the
complements of the strictly local and strictly piecewise languages had not formerly
been characterized language-theoretically, I include those results as well. Having
thoroughly explored the tier-based extensions of formal language classes, I go on to
provide online learning algorithms for them. However, learning of the tier of salient
symbols is a constant challenge for these classes. Learning the multiple-tier-based
classes can bypass this issue, but so far appears unfeasible.

Beyond the tier-based extensions of subregular classes, several classes of formal
languages are known from the computer science literature which have not, to my
knowledge, been used with respect to linguistic description. These are the classes
based on definability in first-order logic restricted to two variables. I show how these
classes fit in with the others in the subregular hierarchy by using their algebraic
characterizations.

I then explored a mechanism for generalizing algebraic classifications from string

135

acceptors to string-to-string functions, showing that most if not all phonologically-
relevant string-to-string functions have complexity bounded above by the tier-based
locally testable class, even if they are not definable with an order-preserving graph
transduction in the style of Courcelle (1994). This implies that when processing
or learning morphophonological patterns, any computational mechanism, human
or otherwise, need only attend to behaviors in states corresponding to the set of
local factors encountered so far (perhaps on tiers). However, functions outside of
the sequential class lack a canonical form, so the true upper bound may be lower for
some of these patterns.

String languages and tree languages have traditionally been treated in different
ways. The algebraic theory of trees has not been completely settled, with Wilke
(1996) using one sort of algebraic structure called a “tree algebra”, Germain and
Pallo (2000) describing a different kind of nonassociative algebra with a special
concatenation, and Bojańczyk and Walukiewicz (2008) offering an interaction of
two monoids. I do not offer a new approach to the algebraic study of trees, but I do
provide a unifying structure via the same graph-theoretic mechanisms as for strings.
This simplifies operations on tree languages, and perhaps an algebraic theory for
trees might progress along these lines.

The leading algebraic theory of finite-state functions, that based on semirings
discussed by Lothaire (2005) and by Roark and Sproat (2007), offers a beautiful
unification of string acceptors and string transducers. It can define standard acceptors,
weighted automata, string-to-string relations both with and without probabilities,
and more. So much more that with particular choices of semiring, parsing can be
represented with a machine of a single state. In fact, any computable function can
be represented in this way. All of the state is pushed into the semiring. But when
restricted to finite structures, transformations become impossible and the unifying
beauty of the formalism is lost. It is an open question then which semirings make for
reasonable accumulators. In avoidance of this question, I simply recommend using
the mechanisms described in Chapters 4 and 5, bringing in semirings only sparingly,
and only in settings where the additional power is known and understood.

In short, I hope that discussion of a structure-based approach to linguistic
analysis may encourage others to more freely discuss the variety of ways in which
natural language patterns can be described and to consider structural and learnability
concerns when proposing new classes of formal languages and transformations for
linguistic purposes. I provide software, documented in Chapter 9, to aid in engaging
with this approach.

Paths for future exploration are numerous. Mixed relation functions, like the
piecewise-locally testable and strictly piecewise-local classes defined by factors
involving both adjacency and general precedence, are still largely unexplored. Perhaps
there are varieties of monoids or semigroups to which these correspond, or perhaps the

136

algebraic view might expose a similar class worth exploring. Function composition
does not preserve algebraic properties, but direct products do, so a mechanism for
decomposing functions such that they may be recombined with a direct product
might prove useful. Further, most mainstream treatments of syntax rely on trees, and
while there are some ideas regarding a subregular hierarchy of tree languages (Wilke,
1996; Benedikt and Segoufin, 2009), it is nowhere near as well-developed as that for
strings. And finally, exploring subregular (or, subrational) classes of relations may
also prove useful in describing phonological or morphological transformations.

137

BIBLIOGRAPHY

Alfred Vaino Aho, Michael Randolph Garey, and Jeffrey David Ullman. The transitive
reduction of a directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.
doi: 10.1137/0201008.

Alëna Aksënova and Sanket Deshmukh. Formal restrictions on multiple tiers. In
Proceedings of the Society for Computation in Linguistics, volume 1, pages 64–73,
Salt Lake City, Utah, 2018. doi: 10.7275/R5K64G8S.

Jorge Almeida. Semidirect products of pseudovarieties from the universal algebraist’s
point of view. Journal of Pure and Applied Algebra, 60(2):113–128, October
1989. doi: 10.1016/0022-4049(89)90124-2.

Jorge Almeida. A syntactical proof of locality of DA. International Journal Algebra
and Computation, 6(2):165–177, 1996. doi: 10.1142/S021819679600009X.

Richard Brian Applegate. Ineseño Chumash Grammar. PhD thesis, University of
California, Berkeley, 1972.

Alejandro Barrero. Unranked tree languages. Pattern Recognition, 24(1):9–18, 1991.
doi: 10.1016/0031-3203(91)90112-I.

Danièle Beauquier and Jean-Éric Pin. Factors of words. In Giorgio Ausiello,
Mariangiola Dezani-Ciancaglini, and Simonetta Ronchi Della Rocca, editors,
Automata, Languages and Programming: 16th International Colloquium, volume
372 of Lecture Notes in Computer Science, pages 63–79. Springer Berlin /
Heidelberg, 1989. doi: 10.1007/BFb0035752.

Danièle Beauquier and Jean-Éric Pin. Languages and scanners. Theoretical Computer
Science, 84(1):3–21, July 1991. doi: 10.1016/0304-3975(91)90258-4.

Kenneth Reid Beesley and Lauri Karttunen. Finite State Morphology. CSLI
Publications, 2003.

Michael Benedikt and Luc Segoufin. Regular tree languages definable in FO and
in FOmod. ACM Transactions on Computational Logic, 11(1):4:1–32, October
2009. doi: 10.1145/1614431.1614435.

138

Jean Berstel. Fonctions rationnelles et addition. In M. Blab, editor, Théorie des
Langages, École de printemps d’informatique théorique, pages 177–183. LITP,
1982.

Mikołaj Bojańczyk. Transducers with origin information. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages,
and Programming: 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8–11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes
in Computer Science, pages 26–37. Springer Berlin / Heidelberg, 2014. doi:
10.1007/978-3-662-43951-7_3.

Mikołaj Bojańczyk and Igor Walukiewicz. Forest algebras. In Jörg Flum, Erich
Grädel, and Thomas Wilke, editors, Logic and Automata: History and Perspectives,
volume 2 of Texts in Logic and Games, pages 107–131. Amsterdam University
Press, 2008.

Mikołaj Bojańczyk, Laure Daviaud, Bruno Guillon, and Vincent Penelle. Which
classes of origin graphs are generated by transducers? In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Collo-
quium on Automata, Languages, and Programming (ICALP 2017), volume 80 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 114:1–114:13,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ICALP.2017.114.

Véronique Bruyère and Christophe Reutenauer. A proof of Choffrut’s theorem
on subsequential functions. Theoretical Computer Science, 215(1–2):329–335,
February 1999. doi: 10.1016/S0304-3975(98)00163-7.

Janusz Antoni Brzozowski and Faith Ellen Fich. On generalized locally testable
languages. Discrete Mathematics, 50:153–169, 1984. doi: 10.1016/
0012-365X(84)90045-1.

Janusz Antoni Brzozowski and Robert Knast. The dot-depth hierarchy of star-free
languages is infinite. Journal of Computer and System Sciences, 16(1):37–55,
February 1978. doi: 10.1016/0022-0000(78)90049-1.

Janusz Antoni Brzozowski and Imre Simon. Characterizations of locally testable
events. Discrete Mathematics, 4(3):243–271, March 1973. doi: 10.1016/
S0012-365X(73)80005-6.

Julius Richard Büchi. Weak second-order arithmetic and finite automata. Zeitschrift
für mathematische Logik und Grundlagen der Mathematik, 6(1–6):66–92, 1960.
doi: 10.1002/malq.19600060105.

139

Phillip Burness and Kevin McMullin. Efficient learning of output tier-based strictly
2-local functions. In Proceedings of the 16th Meeting on the Mathematics of Lan-
guage, pages 78–90, Toronto, Canada, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/W19-5707.

Phillip Burness and Kevin McMullin. Modelling non-local maps as strictly piecewise
functions. In Proceedings of the Society for Computation in Linguistics, volume 3,
pages 493–495, New Orleans, Louisiana, 2020. doi: 10.7275/xtrm-ny22.

Pascal Caron. LANGAGE: A Maple package for automaton characterization of regular
languages. In Derick Wood and Sheng Yu, editors, Automata Implementation,
volume 1436 of Lecture Notes in Computer Science, pages 46–55. Springer Berlin
/ Heidelberg, 1998. doi: 10.1007/BFb0031380.

Pascal Caron. Families of locally testable languages. Theoretical Computer Science,
242(1–2):361–376, 2000. doi: 10.1016/S0304-3975(98)00332-6.

Olivier Carton and Luc Dartois. Aperiodic two-way transducers and FO-transductions.
In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer Science
Logic (CSL 2015), volume 41 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 160–174, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi: 10.4230/LIPIcs.CSL.2015.160.

Jane Chandlee. Strictly Local Phonological Processes. PhD thesis, Univer-
sity of Delaware, 2014. URL https://chandlee.sites.haverford.edu/
wp-content/uploads/2015/05/Chandlee_dissertation_2014.pdf.

Jane Chandlee and Jeffrey Heinz. Strict locality and phonological maps. Linguistic
Inquiry, 49(1):23–60, January 2018. doi: 10.1162/ling_a_00265.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. Learning strictly local subsequential
functions. Transactions of the Association for Computational Linguistics, 2:
491–503, November 2014. doi: 10.1162/tacl_a_00198.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. Output strictly local functions.
In Marco Kuhlmann, Makoto Kanazawa, and Gregory M. Kobele, editors, Pro-
ceedings of the 14th Meeting on the Mathematics of Language, pages 112–125,
Chicago, USA, July 2015. Association for Computational Linguistics. doi:
10.3115/v1/w15-2310.

Noam Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113–124, September 1956. doi: 10.1109/TIT.1956.
1056813.

140

https://chandlee.sites.haverford.edu/wp-content/uploads/2015/05/Chandlee_dissertation_2014.pdf
https://chandlee.sites.haverford.edu/wp-content/uploads/2015/05/Chandlee_dissertation_2014.pdf

Noam Chomsky. On certain formal properties of grammars. Information and Control,
2(2):137–167, June 1959. doi: 10.1016/S0019-9958(59)90362-6.

Genung L. Clapper. U.S. Patent 2,969,526, January 1961.

Alexander Clark. The syntactic concept lattice: Another algebraic theory of the
context-free languages? Journal of Logic and Computation, 25(5):1203–1229,
October 2015. doi: 10.1093/logcom/ext037.

Robin Clark and Ian Roberts. A computational model of language learnability and
language change. Linguistic Inquiry, 24(2):299–345, 1993.

Rina S. Cohen and Janusz Antoni Brzozowski. Dot-depth of star-free events.
Journal of Computer and System Sciences, 5(1):1–16, February 1971. doi:
10.1016/S0022-0000(71)80003-X.

Thomas Colcombet. Green’s relations and their use in automata theory. In Adrian-
Horia Dediu, Shunsuke Inenaga, and Carlos Martín-Vide, editors, Language
and Automata Theory and Applications: Proceedings of the 5th International
Conference, LATA 2011, volume 6638 of Theoretical Computer Science and
General Issues, pages 1–21, Heidelberg, 2011. Springer-Verlag. doi: 10.1007/
978-3-642-21254-3_1.

Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez,
Christof Löding, Sophie Tison, and Marc Tommasi. Tree automata techniques
and applications, October 2007. URL http://tata.gforge.inria.fr.

Bruno Courcelle. Monadic second-order definable graph transductions: A
survey. Theoretical Computer Science, 126(1):53–75, April 1994. doi:
10.1016/0304-3975(94)90268-2.

Aldo De Luca and Antonio Restivo. A characterization of strictly locally testable
languages and its application to subsemigroups of a free semigroup. Information
and Control, 44(3):300–319, March 1980. doi: 10.1016/S0019-9958(80)
90180-1.

Aniello De Santo and Thomas Graf. Structure sensitive tier projection: Ap-
plications and formal properties. In Raffaella Bernardi, Greg Kobele, and
Sylvain Pogodalla, editors, Formal Grammar 2019, volume 11668 of Lec-
ture Notes in Computer Science, pages 35–50. Springer Verlag, 2019. doi:
10.1007/978-3-662-59648-7_3.

141

http://tata.gforge.inria.fr

Hossep Dolatian and Jonathan Rawski. Multi-input strictly local functions for
templatic morphology. In Proceedings of the Society for Computation in Linguistics,
volume 3, pages 282–296, New Orleans, Louisiana, 2020. URL https://
scholarworks.umass.edu/scil/vol3/iss1/28.

Matt Edlefsen, Dylan Leeman, Nathan Myers, Nathaniel Smith, Molly Visscher, and
David Wellcome. Deciding strictly local (SL) languages. In Jon Breitenbucher,
editor, Proceedings of the 2008 Midstates Conference for Undergraduate Research
in Computer Science and Mathematics, pages 66–73, 2008.

Samuel Eilenberg and Marcel-Paul Schützenberger. On pseudovarieties. Advances
in Mathematics, 19(3):413–418, March 1976. doi: 10.1016/0001-8708(76)
90029-3.

Calvin C. Elgot. Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society, 98(1):21–51, January 1961.
doi: 10.2307/1993511.

Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with
two variables and unary temporal logic. In Proceedings of the Twelfth Annual
IEEE Symposium on Logic in Computer Science, pages 228–235, July 1997. doi:
10.1109/LICS.1997.614950.

Faith Ellen Fich and Janusz Antoni Brzozowski. A characterization of a dot-depth
two analogue of generalized definite languages. In Hermann A. Maurer, editor,
Automata, Languages and Programming. ICALP 1979, volume 71 of Lecture
Notes in Computer Science, pages 230–244. Springer-Verlag, July 1979. doi:
10.1007/3-540-09510-1_18.

Emmanuel Filiot. Logic-automata connections for transformations. In Logic and Its
Applications, volume 8923 of Lecture Notes in Computer Science, pages 30–57.
Springer Berlin / Heidelberg, 2015. doi: 10.1007/978-3-662-45824-2_3.

Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. First-order definability of
rational transductions: An algebraic approach. In LICS ’16: Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pages
387–396. Association for Computing Machinery, July 2016. doi: 10.1145/
2933575.2934520.

Christiane Frougny and Jacques Sakarovitch. Synchronized rational relations of
finite and infinite words. Theoretical Computer Science, 108:45–82, 1993. doi:
10.1016/0304-3975(93)90230-Q.

142

https://scholarworks.umass.edu/scil/vol3/iss1/28
https://scholarworks.umass.edu/scil/vol3/iss1/28

Jie Fu, Jeffrey Heinz, and Herbert G. Tanner. An algebraic characterization of
strictly piecewise languages. In Mitsunori Ogihara and Jun Tarui, editors, Theory
and Applications of Models of Computation, volume 6648 of Lecture Notes in
Computer Science, pages 252–263. Springer Berlin / Heidelberg, 2011. doi:
10.1007/978-3-642-20877-5_26.

Pedro Garcia, Enrique Vidal, and José Oncina. Learning locally testable languages in
the strict sense. In Proceedings of the 1st International Workshop on Algorithmic
Learning Theory, pages 325–338, Tokyo, Japan, 1990. URL https://grfia.
dlsi.ua.es/repositori/grfia/pubs/111/alt1990.pdf.

Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó, Budapest,
Hungary, 1984.

Wouter Gelade, Tomasz Idziaszek, Wim Martens, Frank Neven, and Jan Paredaens.
Simplifying XML schema: Single-type approximations of regular tree languages.
Journal of Computer and System Sciences, 79(6):910–936, September 2013. doi:
10.1016/j.jcss.2013.01.009.

Christian Germain and Jean Pallo. Langages rationnels définis avec une concaténation
non-associative. Theoretical Computer Science, 233(1–2):217–231, February
2000. doi: 10.1016/S0304-3975(98)00043-7.

Abraham Ginzburg. About some properties of definite, reverse-definite and related
automata. IEEE Transactions on Electronic Computers, EC-15(5):806–810,
October 1966. doi: 10.1109/pgec.1966.264264.

R. W. N. Goedemans, Jeffrey Heinz, and Harry van der Hulst. StressTyp2, April
2015. URL http://st2.ullet.net/.

Edward Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, May 1967. doi: 10.1016/S0019-9958(67)91165-5.

Thomas Graf. The power of locality domains in phonology. Phonology, 34(2):
385–405, 2017. doi: 10.1017/S0952675717000197.

Thomas Graf. Why movement comes for free once you have ajdunction. In
Daniel Edmiston, Marina Ermolaeva, Emre Hakgüder, Jackie Lai, Kathryn
Montemurro, Brandon Rhodes, Amara Sankhagowit, and Michael Tabatowski,
editors, Proceedings of the Fifty-third Annual Meeting of the Chicago Linguistic
Society, pages 117–136, Chicago, Illinois, 2018. Chicago Linguistic Society.

143

https://grfia.dlsi.ua.es/repositori/grfia/pubs/111/alt1990.pdf
https://grfia.dlsi.ua.es/repositori/grfia/pubs/111/alt1990.pdf
http://st2.ullet.net/

James Alexander Green. On the structure of semigroups. Annals of Mathematics, 54
(1):163–172, July 1951. doi: 10.2307/1969317.

Leonard H. Haines. On free monoids partially ordered by embedding. Journal
of Combinatorial Theory, 6(1):94–98, 1969. doi: 10.1016/s0021-9800(69)
80111-0.

David Glenn Hays. Automatic language-data processing. In Harold Borko, editor,
Computer Applications in the Behavioral Sciences, pages 394–423. 1962.

Jeffrey Heinz. Inductive Learning of Phonotactic Patterns. PhD thesis, University of
California, Los Angeles, 2007.

Jeffrey Heinz. Learning long-distance phonotactics. Linguistic Inquiry, 41(4):
623–661, October 2010a. doi: 10.1162/ling_a_00015.

Jeffrey Heinz. String extension learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 897–906, Uppsala,
Sweden, July 2010b. Association for Computational Linguistics. URL https:
//www.aclanthology.org/P10-1092.

Jeffrey Heinz. The computational nature of phonological generalizations. In Larry
Hyman and Frank Plank, editors, Phonological Typology, volume 23 of Phonetics
and Phonology, chapter 5, pages 126–195. Mouton de Gruyter, 2018. doi:
10.1515/9783110451931-005.

Jeffrey Heinz and Regine Lai. Vowel harmony and subsequentiality. In Proceedings
of the 13th Meeting on the Mathematics of Language, pages 52–63, Sofia,
Bulgaria, August 2013. Association for Computational Linguistics. URL https:
//aclanthology.org/W13-3006.

Jeffrey Heinz and James Rogers. Learning subregular classes of languages with fac-
tored deterministic automata. In Proceedings of the 13th Meeting on the Mathemat-
ics of Language, pages 64–71, Sofia, Bulgaria, August 2013. Association for Com-
putational Linguistics. URL https://www.aclanthology.org/W13-3007.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner. Tier-based strictly local
constraints for phonology. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Short Papers, volume 2, pages 58–
64, Portland, Oregon, 2011. Association for Computational Linguistics. URL
https://aclanthology.org/P11-2011.

144

https://www.aclanthology.org/P10-1092
https://www.aclanthology.org/P10-1092
https://aclanthology.org/W13-3006
https://aclanthology.org/W13-3006
https://www.aclanthology.org/W13-3007
https://aclanthology.org/P11-2011

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing. Learning in the limit with
lattice-structured hypothesis spaces. Theoretical Computer Science, 457:111–127,
October 2012. doi: 10.1016/j.tcs.2012.07.017.

Markus Holzer and Barbara König. On deterministic finite automata and syntactic
monoid size. Theoretical Computer Science, 327(3):319–347, November 2004.
doi: 10.1016/j.tcs.2004.04.010.

John Edward Hopcroft and Jeffrey David Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

John M. Howie. Fundamentals of Semigroup Theory. Oxford University Press, New
York, NY, 1995.

Liang Huang and David Chiang. Better k-best parsing. In Harry Bunt and Robert
Malouf, editors, Proceedings of the Ninth International Workshop on Parsing
Technology, pages 53–65, Vancouver, British Columbia, October 2005. URL
https://aclanthology.org/W05-1506.

Mans Hulden. Finite-State Machine Construction Methods and Algorithms for
Phonology and Morphology. PhD thesis, The University of Arizona, 2009. URL
https://hdl.handle.net/10150/196112.

Graham Hutton. A tutorial on the universality and expressiveness of fold.
Journal of Functional Programming, 9(4):355–372, 1999. doi: 10.1017/
s0956796899003500.

Larry M. Hyman. How (not) to do phonological typology: The case of pitch-accent.
Language Sciences, 31(2–3):213–238, 2009. doi: 10.1016/j.langsci.2008.
12.007.

Larry M. Hyman and Francis X. Katamba. A new approach to tone in Luganda.
Language, 69(1):34–67, March 1993. doi: 10.2307/416415.

Sanjay Jain, Steffen Lange, and Sandra Zilles. Some natural conditions on incremental
learning. Information and Computation, 205(11):1671–1684, November 2007.
doi: 10.1016/j.ic.2007.06.002.

Adam Jardine. Computationally, tone is different. Phonology, 33(2):247–283, August
2016. doi: 10.1017/s0952675716000129.

Adam Jardine. The expressivity of autosegmental grammars. Journal of Logic,
Language and Information, 28(1):9–54, 2019. ISSN 1572-9583. doi: 10.1007/
s10849-018-9270-x.

145

https://aclanthology.org/W05-1506
https://hdl.handle.net/10150/196112

Adam Jardine and Jeffrey Heinz. Learning tier-based strictly 2-local languages.
Transactions of the Association for Computation in Linguistics, 4:87–98, 2016.
doi: 10.1162/tacl_a_00085.

Adam Jardine and Kevin McMullin. Efficient learning of tier-based strictly k-local
languages. In Frank Drewes, Carlos Martín-Vide, and Bianca Truthe, editors,
Language and Automata Theory and Applications: 11th International Conference,
volume 10168 of Lecture Notes in Computer Science, pages 64–76. Springer,
Cham, 2017. doi: 10.1007/978-3-319-53733-7_4.

Jing Ji and Jeffrey Heinz. Input strictly local tree transducers. In Alberto Leporati,
Carlos Martín-Vide, Dana Shapira, and Claudio Zandron, editors, Language
and Automata Theory and Applications: Proceedings of the 14th International
Conference, LATA 2020, volume 12038 of Theoretical Computer Science and
General Issues, pages 369–381, Cham, Switzerland, 2020. Springer International
Publishing. doi: 10.1007/978-3-030-40608-0_26.

Mark Johnson. Expressing disjunctive and negative feature constraints with classical
first-order logic. In 28th Annual Meeting of the Association for Computational
Linguistics, pages 173–179, Pittssburgh, Pennsylvania, June 1990. Association for
Computational Linguistics. doi: 10.3115/981823.981845.

Aravind Krishna Joshi and Leon Sholom Levy. Phrase structure trees bear more fruit
than you would have thought. American Journal of Computational Linguistics, 8(1):
1–11, January–March 1982. URL https://aclanthology.org/J82-1001.

Daniel Jurafsky and James Martin. Speech and Language Processing: An Introduc-
tion to Natural Language Processing, Speech Recognition, and Computational
Linguistics. Prentice-Hall, Upper Saddle River, NJ, second edition, 2009.

Peter Jurgec. Feature spreading 2.0: A unified theory of assimilation, June 2011.

Tadao Kasami. An efficient recognition and syntax-analysis algorithm for context-free
languages. Technical Report R-257, University of Illinois, Urbana, Illinois, March
1966.

George Katsirelo, Nina Naraodytska, and Toby Walsh. The weighted CFG constraint.
In Laurent Perron and Michael Alan Trick, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
CPAIOR 2008, volume 5015 of Lecture Notes in Computer Science, pages 323–327.
Springer Berlin / Heidelberg, 2008. doi: 10.1007/978-3-540-68155-7_31.

146

https://aclanthology.org/J82-1001

Paul J. King. A Logical Formalism for Head-Driven Phrase Structure Grammar.
PhD thesis, University of Manchester, 1989.

Stephen Cole Kleene. Representation of events in nerve nets and finite automata. In
Claude Elwood Shannon and John McCarthy, editors, Automata Studies, volume 34
of Annals of Mathematics Studies, pages 3–42. Princeton University Press, 1956.
doi: 10.1515/9781400882618-002.

Dan Klein and Christopher D. Manning. Parsing and hypergraphs. In Harry Bunt,
John Carroll, and Giorgio Satta, editors, New Developments in Parsing Technology,
volume 23 of Text, Speech and Language Technology, pages 351–372. Springer
Dordrecht, 2004. doi: 10.1007/1-4020-2295-6_18.

Robert Knast. A semigroup characterization of dot-depth one languages.
RAIRO – Informatique théorique, 17(4):321–330, 1983. doi: 10.1051/ita/
1983170403211.

Donald Ervin Knuth, James Hiram Morris, and Vaughan Ronald Pratt. Fast pattern
matching in strings. SIAM Journal on Computing, 6(2):323–350, August 1977.
doi: 10.1137/0206024.

Andreas Krebs, Kamal Lodaya, Paritosh K. Pandya, and Howard Straubing. Two-
variable logics with some betweenness relations: Expressiveness, satisfiability,
and membership. Logical Methods in Computer Science, 16(3):1–41, September
2020. doi: 10.23638/LMCS-16(3:16)2020.

Kenneth Krohn, Richard Mateosian, and John Rhodes. Methods of the al-
gebraic theory of machines: Decomposition theorem for generalized ma-
chines; Properties preserved under series and parallel compositions of ma-
chines. Journal of Computer and System Sciences, 1(1):55–85, 1967. doi:
10.1016/S0022-0000(67)80007-2.

Dakotah Lambert. Grammar interpretations and learning TSL online. In Proceedings
of the Fifteenth International Conference on Grammatical Inference, volume 153
of Proceedings of Machine Learning Research, pages 81–91, August 2021. URL
https://proceedings.mlr.press/v153/lambert21a.html.

Dakotah Lambert and James Rogers. A logical and computational methodology for
exploring systems of phonotactic constraints. In Proceedings of the Society for
Computation in Linguistics, volume 2, pages 247–256, New York City, New York,
2019. doi: 10.7275/t0dv-9t05.

147

https://proceedings.mlr.press/v153/lambert21a.html

Dakotah Lambert and James Rogers. Tier-based strictly local stringsets: Perspectives
from model and automata theory. In Proceedings of the Society for Computation
in Linguistics, volume 3, pages 330–337, New Orleans, Louisiana, 2020. doi:
10.7275/2n1j-pj39.

Dakotah Lambert, Jonathan Rawski, and Jeffrey Heinz. Typology emerges from
simplicity in representations and learning. Journal of Language Modelling, 9(1):
151–194, August 2021. doi: 10.15398/jlm.v9i1.262.

Andrew Lamont. Decomposing phonological transformations in serial derivations.
In Proceedings of the Society for Computation in Linguistics, volume 1, pages
91–101, Salt Lake City, Utah, 2018. doi: 10.7275/R55X273D.

Nathan Lhote. Definability and Synthesis of Transductions. PhD thesis, Uni-
versité de Bordeaux; Université libre de Bruxelles, 2018. URL https:
//tel.archives-ouvertes.fr/tel-01960958.

Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Sci-
ence. Springer Berlin / Heidelberg, 2004. doi: 10.1007/978-3-662-07003-1.

Silvain Lombardy and Jacques Sakarovitch. Sequential? Theoretical Computer
Science, 356(1–2):224–244, May 2006. doi: 10.1016/j.tcs.2006.01.028.

M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, New
York, 2005.

Connor Mayer and Travis Major. A challenge for tier-based strict locality from
Uyghur backness harmony. In Annie Foret, Greg Kobele, and Sylvain Pogodalla,
editors, Formal Grammar 2018, volume 10950 of Lecture Notes in Computer
Science, pages 62–83. 2018. doi: 10.1007/978-3-662-57784-4_4.

John J. McCarthy. Feature geometry and dependency: A review. Phonetica, 45(2–4):
84–108, 1988. doi: 10.1159/000261820.

James David McCawley. Concerning the base component of a transformational
grammar. Foundations of Language, 4(3):243–269, August 1968.

Adam G. McCollum, Eric Baković, Anna Mai, and Eric Meinhardt. Unbounded
circumambient processes in segmental phonology. Phonology, 37(2):215–255,
August 2020. doi: 10.1017/S095267572000010X.

Kevin McMullin. Tier-Based Locality in Long-Distance Phonotactics: Learnability
and Typology. PhD thesis, University of British Columbia, 2016.

148

https://tel.archives-ouvertes.fr/tel-01960958
https://tel.archives-ouvertes.fr/tel-01960958

Robert McNaughton. Algebraic decision procedures for local testability. Mathemati-
cal Systems Theory, 8(1):60–76, March 1974. doi: 10.1007/bf01761708.

Robert McNaughton and Seymour Aubrey Papert. Counter-Free Automata. MIT
Press, 1971.

Robert McNaughton and Hisao Yamada. Regular expressions and state graphs for
automata. IRE Transactions on Electronic Computers, EC-9(1):39–47, March
1960. doi: 10.1109/TEC.1960.5221603.

Don Dalzell Miller and Alfred Hoblitzelle Clifford. Regular D-classes in semigroups.
Transactions of the American Mathematical Society, 82(1):270–280, May 1956.
doi: 10.2307/1992989.

Mehryar Mohri. Finite-state transducers in language and speech processing. Compu-
tational Linguistics, 23(2):269–311, June 1997. URL https://aclanthology.
org/J97-2003.

Anil Nerode. Linear automaton transformations. In Proceedings of the American
Mathematical Society, volume 9, pages 541–544. American Mathematical Society,
August 1958. doi: 10.1090/s0002-9939-1958-0135681-9.

John von Neumann. On regular rings. Proceedings of the National Academy of
Sciences, 22(12):707–713, 1936. doi: 10.1073/pnas.22.12.707.

José Oncina, Pedro García, and Enrique Vidal. Learning subsequential transducers
for pattern recognition interpretation tasks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(5):448–458, May 1993. doi: 10.1109/34.211465.

Daniel Nathan Osherson, Michael Stob, and Scott Weinstein. Systems That Learn.
MIT Press, 1986.

Jean-Pierre Pécuchet. Automates boustrophedon, semi-groupe de Birget et monoïde
inversif libre. RAIRO – Informatique théorique, 19(1):71–100, 1985. doi:
10.1051/ita/1985190100711.

Micha A. Perles, Michael Oser Rabin, and Eliahu Shamir. The theory of definite
automata. IEEE Transactions on Electronic Computers, 12(3):233–243, June
1963. doi: 10.1109/PGEC.1963.263534.

Byron E. Phelps. U.S. Patent 2,774,646, December 1956.

149

https://aclanthology.org/J97-2003
https://aclanthology.org/J97-2003

Jean-Éric Pin. Syntactic semigroups. In Grzegorz Rozenberg and Arto Salomaa, edi-
tors, Handbook of Formal Languages: Volume 1 Word, Language, Grammar, pages
679–746. Springer-Verlag, Berlin, 1997. doi: 10.1007/978-3-642-59136-5_
10.

Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product. Theory
of Computing Systems, 30(4):383–422, August 1997. doi: 10.1007/bf02679467.

Michael Oser Rabin and Dana Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3(2):114–125, April 1959. doi:
10.1147/rd.32.0114.

George Neal Raney. Sequential functions. Journal of the ACM, 5(2):177–180, April
1958. doi: 10.1145/320924.320930.

Jonathan Rawski and Hossep Dolatian. Multi-input strictly local functions for tonal
phonology. In Proceedings of the Society for Computation in Linguistics, volume 3,
pages 245–260, New Orleans, Louisiana, 2020. URL https://scholarworks.
umass.edu/scil/vol3/iss1/25.

Brian Roark and Richard Sproat. Computational Approaches to Morphology and
Syntax, volume 4 of Oxford Surveys in Syntax and Morphology. Oxford University
Press, New York, NY, 2007.

James Rogers. A model-theoretic framework for theories of syntax. In Proceedings
of the 34th Annual Meeting of the Association for Computational Linguistics,
pages 10–16, Santa Cruz, CA, 1996. Association for Computational Linguistics.
doi: 10.3115/981863.981865.

James Rogers. A Descriptive Approach to Language-Theoretic Complexity. (Mono-
graph.) Studies in Logic, Language, and Information. CSLI Publications, 1998.

James Rogers and Dakotah Lambert. Some classes of sets of structures definable
without quantifiers. In Proceedings of the 16th Meeting on the Mathematics of Lan-
guage, pages 63–77, Toronto, Canada, July 2019a. Association for Computational
Linguistics. doi: 10.18653/v1/W19-5706.

James Rogers and Dakotah Lambert. Extracting Subregular constraints from Regular
stringsets. Journal of Language Modelling, 7(2):143–176, September 2019b. doi:
10.15398/jlm.v7i2.209.

James Rogers and Geoffrey K. Pullum. Aural pattern recognition experiments and
the subregular hierarchy. Journal of Logic, Language and Information, 20(3):
329–342, June 2011. doi: 10.1007/s10849-011-9140-2.

150

https://scholarworks.umass.edu/scil/vol3/iss1/25
https://scholarworks.umass.edu/scil/vol3/iss1/25

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David
Wellcome, and Sean Wibel. On languages piecewise testable in the strict sense. In
Christian Ebert, Gerhard Jäger, and Jens Michaelis, editors, The Mathematics of
Language: Revised Selected Papers from the 10th and 11th Biennial Conference
on the Mathematics of Language, volume 6149 of LNCS/LNAI, pages 255–265.
FoLLI/Springer, 2010. doi: 10.1007/978-3-642-14322-9_19.

James Rogers, Jeff Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert, and
Sean Wibel. Cognitive and sub-regular complexity. In Glyn Morrill and Mark-
Jan Nederhof, editors, Formal Grammar 2012, volume 8036 of Lecture Notes
in Computer Science, pages 90–108. Springer-Verlag, 2012. doi: 10.1007/
978-3-642-39998-5_6.

Ichirō Sakai. Syntax in universal translation. In 1961 International Conference
on Machine Translation of Languages and Applied Language Analysis, pages
593–608, London, 1962. Her Majesty’s Stationery Office.

Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009. doi: 10.1017/CBO9781139195218.

Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. Infor-
mation and Control, 8(2):190–194, April 1965. doi: 10.1016/s0019-9958(65)
90108-7.

Marcel-Paul Schützenberger. Sur certaines opérations de fermeture dans les langages
rationnels. Symposia Mathematica, 15:245–253, 1975.

Marcel-Paul Schützenberger. Sur une variante des fonctions sequentielles. Theoretical
Computer Science, 4(1):47–57, February 1977. doi: 10.1016/0304-3975(77)
90055-X.

Imre Simon. Piecewise testable events. In Helmut Brakhage, editor, Automata Theory
and Formal Languages, volume 33 of Lecture Notes in Computer Science, pages
214–222. Springer-Verlag, Berlin, 1975. doi: 10.1007/3-540-07407-4_23.

Noah A. Smith and Mark Johnson. Weighted and probabilistic context-free grammars
are equally expressive. Computational Linguistics, 33(4):477–491, December
2007. doi: 10.1162/coli.2007.33.4.477.

Magnus Steinby. Rectangular algebras as tree recognizers. Acta Cybernetica, 22(2):
499–515, January 2015. doi: 10.14232/actacyb.22.2.2015.15.

151

Price Stiffler, Jr. Extension of the fundamental theorem of finite semigroups. Advances
in Mathematics, 11(2):159–209, 1973. doi: 10.1016/0001-8708(73)90007-8.

Howard Straubing. Finite semigroup varieties of the form 𝑉 ∗ 𝐷. Journal of Pure
and Applied Algebra, 36:53–94, 1985. doi: 10.1016/0022-4049(85)90062-3.

Pascal Tesson and Denis Thérien. Diamonds are forever: The variety DA. In
Gracinda M. S. Gomes, Jean-Éric Pin, and Pedro V. Silva, editors, Semigroups,
Algorithms, Automata and Languages, pages 475–499. World Scientific, 2002.
doi: 10.1142/9789812776884_0021.

Denis Thérien and Thomas Wilke. Over words, two variables are as powerful
as powerful as one quantifier alternation: FO2 = Σ2 ∩ Π2. In STOC ’98:
Proceedings of the Thirtieth Annual ACM Symbosium on Theory of Computing,
pages 234–240, New York, NY, 1998. Association for Computing Machinery. doi:
10.1145/276698.276749.

Wolfgang Thomas. Classifying regular events in symbolic logic. Journal of Com-
puter and Systems Sciences, 25:360–376, 1982. doi: 10.1016/0022-0000(82)
90016-2.

Ken Thompson. Programming techniques: Regular expression search algorithm.
Communications of the ACM, 11(6):419–422, June 1968. doi: 10.1145/363347.
363387.

Борис Авраамович Трахтенброт. Конечные Автоматы и Логика Одноместных
Предикатов. Сибирский Математический Журнал, 3(1):103–131, Февраль
1962.

Paola Valdivia, Paolo Buono, Catherine Plaisant, Nicole Dufournaud, and Jean-
Daniel Fekete. Analyzing dynamic hypergraphs with parallel aggregated ordered
hypergraph visualization. IEEE Transactions on Visualization and Computer
Graphics, 27(1):1–13, January 2021. doi: 10.1109/TVCG.2019.2933196.

Odile Vaysse. Addition molle et fonctions 𝑝-locales. Semigroup Forum, 34:157–175,
December 1986. doi: 10.1007/BF02573160.

Thomas Wilke. An algebraic characterization of frontier testable tree languages.
Theoretical Computer Science, 154(1):85–106, January 1996. doi: 10.1016/
0304-3975(95)00131-X.

Charles Yang. On productivity, January 2005.

152

Charles Yang. Who’s afraid of George Kingsley Zipf? Or: Do children and chimps
have language? Significance, 10(6):29–34, December 2013. doi: 10.1111/j.
1740-9713.2013.00708.x.

Charles Yang. Negative knowledge from positive evidence. Language, 91(4):
938–953, 2015. doi: 10.1353/lan.2015.0054.

Daniel Haven Younger. Recognition and parsing of context-free languages in time
𝑛3. Information and Control, 10(2):189–208, February 1967. doi: 10.1016/
S0019-9958(67)80007-X.

Yechezkel Zalcstein. Locally testable languages. Journal of Computer and System
Sciences, 6(2):151–167, April 1972. doi: 10.1016/S0022-0000(72)80020-5.

Bohdan Zelinka. Graphs of semigroups. Časopis pro pěstování matematiky, 106(4):
407–408, 1981. doi: 10.21136/CPM.1981.108493.

153

INDEX

accepting path, 30
anchored model, 14
associativity, 17
attested, 92
automaton

alphabet-agnostic, 33
canonical, 30
complete, 30
minimal, 30
semantic, 121

behaviors, 82

Cayley graph, 19
characterization, 10
Chomsky Normal Form, 114
closure, 17
compatibility, 34
constant, 39
context-free grammar, 113
contexts, 70

definiteness, 72
direct product, 17
domain, 11

equivalence
Myhill, 18
Nerode, 18, 30

factor, 12, 90
at a window, 14

free object, 17

idempotent, 41
semigroup, 41

identity, 17
incremental learner, 91
irregular, 49

locally threshold testable, 29

monoid, 17
free, 10
quotient, 19
submonoid, 17
syntactic, 19
transition, 19

nonaccepting sink, 30

online learner, 91
onward, 70

powerset graph, 31
preprojective ideal containment, 27
product construction, 35
projective relativization, 23
pseudovariety, 53

quotient, 19

regular
D-class, 49
element, 48

relation
labeling, 11
ordering, 11

reverse definiteness, 79

saturating multiset, 97
semigroup, 16

aperiodic, 46

154

free, 10, 17
idempotent, 41
quotient, 19
subsemigroup, 17

local, 17
projected, 39

syntactic, 38
semilattices, 52
subregular hierarchy, 21
subsequence, 93

augmented, 94
valid, 94

tails, 70
test invariance

local, 28
local threshold, 29
preprojective

local, 28
local threshold, 29

tier alphabet, 90
transducer

sequential, 68
subsequential, 69

triviality, 45

weak determinism, 85
wildcard, 33
window, 12

155

A: CONSTRAINTS CLASSIFIED

What follows is a collection of concrete linguistic constraints, described both with
prose and with a pleb program. Each is classified according to the hierarchy of
Figure 4.16 on page 66. Patterns that are strictly piecewise or (tier-based) strictly
local will be described as such even though these classes are not complement-closed
and thus not shown in that figure. Other constraints of the same form will be in
the same collection of classes. All classification has been verified by the Language
Toolkit described in Chapter 9.

A.1 Local Constraints
The StressTyp2 database (Goedemans et al., 2015) is a collection of stress patterns of
world languages, which grew out of earlier work by Heinz (2007). The stress pattern
of Khmer1 is described as follows in this database:

• In words of all sizes, primary stress falls on the final syllable.

• In words of all sizes, secondary stress falls on heavy syllables.

• Light syllables occur only immediately following heavy syllables.

• Light monosyllables do not occur.

We will investigate a few constraints from the factorization of this pattern. The third
constraint factors into two: it forbids a substring of two consecutive light syllables,
and it forbids beginning on a light syllable.

Over an alphabet Σ = {L,Ĺ, H̀, H́}, the unanchored constraint is as follows:

¬⟨{/L, /Ĺ} {/L, /Ĺ}⟩

Of course, one could define a variable to represent the class of light syllables {L,Ĺ}.
This is strictly local (sl), and therefore also tier-based strictly local and MeJI by
inclusion. And these are the lowest classes in each branch that contains this pattern.
It is not D nor K nor DA. Note that sl contains D and K and is a subclass of LJI
but is incomparable with L1.

Forbidding beginning on a light syllable is a Boolean combination of prefixes:

1An Austroasiatic language spoken in Cambodia.

156

¬⋊⟨{/L, /Ĺ}⟩

This is in K and thus ⟦K⟧T and R by containment, and still this is the lowest
classification on each branch.

The first aspect of the Khmer stress pattern, requiring that words end on a primary
stress, is in some sense the reversal of this sort of pattern:

⋉⟨{/Ĺ, /H́}⟩

This is in D and thus ⟦D⟧T and L by containment, and this is the lowest classification
on each branch.

Finally the forbidding of light monosyllables, while implicit in requiring light
syllables to have a heavy syllable immediately prior, is the final type of strictly local
constraint:

¬⋊⋉⟨{/L, /Ĺ}⟩

As a cofinite set, this is in F and thus ⟦F⟧T and J by containment, and again, this is
the lowest classification on each branch.

Thus this pattern exhibits every type of 2-sl constraint, summarized as follows:

= universe {/L, /Ĺ, /H̀, /H́}
Constraint Classes

¬⟨{/L, /Ĺ} {/L, /Ĺ}⟩ MeJI sl ⟦sl⟧T
¬⋊⟨{/L, /Ĺ}⟩ R K ⟦K⟧T
⋉⟨{/Ĺ, /H́}⟩ L D ⟦D⟧T
¬⋊⋉⟨{/L, /Ĺ}⟩ J F ⟦F⟧T

A.2 Harmonies
Some languages have long-distance dependencies. In the following discussion, “s” is
used in the generic to refer to any [+anterior] sibilant and “ʃ” any [−anterior] sibilant.
The sibilant harmony of Tsuut’ina2 is asymmetric, forbidding the occurrence of “s”
before “ʃ” (Heinz, 2010a). In contrast that of Samala3 is symmetric, forbidding
the occurrence of “s” and “ʃ” in the same word (Applegate, 1972; Heinz, 2010a).
Some are blocked, such as that of Slovenian in which “s” cannot occur before “ʃ”
unless a coronal obstruent such as “t” intervenes (Jurgec, 2011). A symmetric
blocked harmony is the transvocalic harmony of Koyra4 (McMullin, 2016). Their
classifications are summarized in order in the following table, where “a” represents
vowels, which are transparent to all processes, and “k” represents noncoronal
consonants:

2An Athabaskan language spoken in Alberta, Canada; formerly known by the exonym “Sarcee”.
3A Chumashan language from along the Santa Ynez river in California.
4An Omotic language spoken in Ethiopia.

157

= universe {/a, /k, /s, /ʃ, /t}
Constraint Classes
¬⟨/s, /ʃ⟩ sp LJ ⟦sl⟧T

¬∧{⟨{/s⟩, ⟨/ʃ⟩} sp or JI LJI ⟦sl⟧T
[/s, /ʃ, /t]¬⟨/s, /ʃ⟩ MeJI LMeJI ⟦sl⟧T

[/k, /s, /ʃ, /t]¬∨{⟨/s, /ʃ⟩, ⟨/ʃ, /s⟩} MeJI LMeJI ⟦sl⟧T

As evidenced by this table and by the work of McMullin (2016), tier-based strictly
local appears to be the appropriate class for describing most kinds of harmony.

A.3 Counting Symbols
A universal property of stress-bearing languages (Hyman, 2009; Lambert and Rogers,
2019) is that words may not contain more than one syllable with primary stress.
A nearly universal property is that a word must contain at least one such syllable
(Hyman, 2009; Lambert and Rogers, 2019). The conjunction of these is that exactly
one primary stress must occur. These are summarized in order below:

= universe {/𝜎, /�́�}
Constraint Classes
¬⟨/�́�, /�́�⟩ sp or Acom LAcom ⟦F⟧T
⟨/�́�⟩ cosp or JI cosl ⟦F⟧T

[/�́�]⋊⋉⟨/�́�⟩ Acom LAcom ⟦F⟧T

A.4 Tone Plateauing
Luganda5 exhibits a property known as high-tone plateauing, or simply tone plateau-
ing, in which words may not raise back high after dropping from high to low (Hyman
and Katamba, 1993). If the domain is the word, this is strictly piecewise.

= universe {/L, /H}
Constraint Classes
¬⟨/H, /L, /H⟩ sp LAcom ⟦LAcom⟧T

However if the domain is a span of words separated by some symbol X, then the
complexity is higher all around.

= universe {/L, /H, /X}
Constraint Classes

•(∗ • (¬⟨/H, /L, /H⟩,⋊⋉⟨/X⟩),¬⟨/H, /L, /H⟩) MeJI LMeJI ⟦LMeJI⟧T

Note that multiple-tier-based locally testable (B⟦LJI⟧T) is a proper subclass of
MeJI, so this pattern may or may not be multiple-tier-based locally (threshold)
testable based on this presentation. This sort of pattern was used to motivate the
interval-based strictly piecewise class (Graf, 2017).

5A Bantu language spoken in Uganda.

158

A.5 Uyghur Backness Harmony
Mayer and Major (2018) describe the backness harmony of Uyghur6, in which suffix
forms are determined from harmonizing vowel forms, if any, in the stem, else from
harmonizing consonant forms in the stem. Their work centers around showing that
this pattern does not fall into any of the commonly used subregular classes, including
multiple-tier-based strictly local with input strictly local tier projections. This mitsl
class offers more power than a projective relativization (De Santo and Graf, 2019).
In this pattern, the relevant segments are as follows

𝑉 𝑓 = {y, ø,æ} 𝑉𝑏 = {u, o, ɑ}
𝐶 𝑓 = {k, g} 𝐶𝑏 = {q, ʁ}.

They define 𝑆 𝑓 to be 𝑉 𝑓 ∪ 𝐶 𝑓 marked for being in the suffix, and 𝑆𝑏 simi-
larly. The pattern is provided as a regular expression over the alphabet Σ =⋃{𝑉 𝑓 , 𝑉𝑏, 𝐶 𝑓 , 𝐶𝑏, 𝑆 𝑓 , 𝑆𝑏}:

(Σ∗𝑉 𝑓𝑉𝑏
∗
𝑆 𝑓) | (Σ∗𝑉𝑏𝑉 𝑓

∗
𝑆𝑏) | ((𝑉 𝑓 | 𝑉𝑏)

∗
𝐶 𝑓𝐶

∗
𝑓 𝑆 𝑓) | ((𝑉 𝑓 | 𝑉𝑏)

∗
𝐶𝑏𝐶

∗
𝑏𝑆𝑏).

Each of the four disjuncts of this regular expression corresponds to a Boolean
combination of tier-suffixes, as verified by the Language Toolkit:

(Σ∗𝑉 𝑓𝑉𝑏
∗
𝑆 𝑓) :: [𝑉 𝑓]𝑉 𝑓∪𝑉𝑏

and [𝑆 𝑓]Σ
(Σ∗𝑉𝑏𝑉 𝑓

∗
𝑆𝑏) :: [𝑉𝑏]𝑉 𝑓∪𝑉𝑏

and [𝑆𝑏]Σ
((𝑉 𝑓 | 𝑉𝑏)

∗
𝐶 𝑓𝐶

∗
𝑓 𝑆 𝑓) :: [∅]𝑉 𝑓∪𝑉𝑏

and [𝐶 𝑓]𝐶 𝑓∪𝐶𝑏
and [𝐶 𝑓 𝑆 𝑓]Σ

((𝑉 𝑓 | 𝑉𝑏)
∗
𝐶𝑏𝐶

∗
𝑏𝑆𝑏) :: [∅]𝑉 𝑓∪𝑉𝑏

and [𝐶𝑏]𝐶 𝑓∪𝐶𝑏
and [𝐶𝑏𝑆𝑏]Σ

= vf{/y, /ø, /æ} = vb{/u, /o, /ɑ}
= cf {/k, /g} = cb{/q, /ʁ}
= sf {/yS, /øS, /æS, /kS, /gS}
= sb {/uS, /oS, /ɑS, /qS, /ʁS}
= v {vf, vb} = c {cf, cb} = s {sf, sb}
= p1

∧{[v]⋉⟨vf⟩,⋉⟨sf⟩}
= p2

∧{[v]⋉⟨vb⟩,⋉⟨sb⟩}
= p3

∧{[v]⋊⋉⟨⟩, [c]⋉⟨cf⟩,⋉⟨cf sf⟩}
= p4

∧{[v]⋊⋉⟨⟩, [c]⋉⟨cf⟩,⋉⟨cb sb⟩}
= ubh

∨{p1, p2, p3, p4}
ubh

6A Turkic language spoken in the Xinjiang Uyghur Autonomous Region of Western China.

159

Thus the pattern is in B⟦D⟧T. By the classification scheme discussed in this work,
this pattern is located as follows:

= universe {/L, /H}
Constraint Classes
ubh L LL ⟦LL⟧T

It should be noted that B⟦D⟧T is a proper subclass of L. This pattern was used to
motivate the otsl class (Mayer and Major, 2018; De Santo and Graf, 2019).

A.6 Conclusions
This appendix described in prose and in formal terms several constraints from natural
language, further demonstrating pleb syntax (see Chapter 9). Each pattern under
discussion is classified according to the unified subregular hierarchy presented in
this work. The patterns are given in concrete terms, but constraints following the
same abstract form will have the same classifications.

160

	List of Figures
	List of Tables
	List of Symbols
	Acknowledgments
	Introduction
	Review of the Literature
	Outline of the Dissertation

	I
	Formal Languages and String Acceptors
	Notation
	Formal Language Theory
	Finite Model Theory
	Graphs and Finite-State Automata
	Transition Semigroups and Syntactic Monoids
	Equivalence Relations
	Monoid Construction

	Conclusions

	Characterizing Tier-Based Subregular Classes
	Model Theoretic Descriptions
	Language-Theoretic Characterizations
	Strict Locality
	Complements
	Local Testability
	Threshold Testability
	Piecewise Relativizations

	Automata
	Characterizations
	Constructions

	Closure Properties
	Products
	Complements of Automata
	Some Non-Closures

	Algebra
	Strictly Local Stringsets and Their Complements
	Locally Testable Stringsets
	Locally Threshold Testable Stringsets

	Conclusions

	Monoid Varieties and a Subregular Spiral
	Green's Relations and a Basic Hierarchy
	A First Expansion: DA
	Piecewise Testable Languages and Subclasses
	Equations, Varieties, and a Cloned Hierarchy
	Locally DA
	Locally L- or R-Trivial
	Locally J-Trivial
	Locally Aperiodic and Commutative
	Locally Trivial

	Tier-Based Classes
	Conclusions

	Classifying Functions
	Structures and Machines
	String Acceptors
	String-to-String Transducers
	Constructing Monoids from Canonical Machines
	Definite Algebraic Structure

	Input Strictly Local Functions
	Output Strictly Local Functions
	Harmony: Not Strictly Local
	Ambiguous and Two-Way Transducers
	Conclusions

	II
	Learning Tier-Based Strictly Local Languages
	Preliminaries
	(Tier-Based) Strict Locality
	Our Learning Problem
	String Extension Learning

	Deciding Salience
	The Substructures
	Pointwise String Extension Learning
	A Worked Example of the Final Simplified Approach
	Non-Strict Locality
	Conclusions

	Tree Acceptors as Ordered Directed Hypergraphs
	Background
	Trees
	Finite-State Acceptors
	Directed Graphs and Extensions Thereof

	Ordered Directed Hypergraphs
	Decisions and Operations
	Reachability and Satisfiability
	Determinization
	Minimization
	Completion and Trimming
	Finiteness
	Boolean Operations

	Conclusions

	Accumulators and the Problems They Bring
	Parsing as a Monoid
	Going Further: Turing Completeness
	Conclusions

	The Language Toolkit
	Construction: The PLEB Language
	Basic Syntax
	Variadic Operators
	Monadic Operators
	Remarks

	Interacting with the Interpreter
	Interpreter Basics
	Saving and Loading
	Determining the Class of an Expression
	Grammatical Inference
	Comparing Expressions
	Graphical Output
	Generating Dot Files Without Displaying Them
	Operations on the Environment
	Remarks

	Factoring Patterns
	Companion Software
	Conclusions

	Conclusions
	Bibliography
	Index
	Constraints Classified
	Local Constraints
	Harmonies
	Counting Symbols
	Tone Plateauing
	Uyghur Backness Harmony
	Conclusions

