
A Workbench for Logically Definable Stringsets

Dakotah J. Lambert
Earlham College

djlambe11@earlham.edu

Margaret Fero
Earlham College (’14)

mafero10@earlham.edu

Andrew Dai
Earlham College

adai13@earlham.edu

James Rogers
∗

Earlham College

jrogers@cs.earlham.edu

ABSTRACT
We have devised and implemented a suite of computational
tools to support the manipulation of logically defined pat-
terns of strings. Using these, we are building a workbench
that allows one to define sets of strings in terms of systems of
logical constraints, to explore the consistency and indepen-
dence of those constraints and to identify the set of strings
that distinguish one set of constraints from another.

Our primary application domain is the patterns of stressed
syllables that occur in the words of spoken languages. The
workbench provides a fully declarative and relatively trans-
parent method of formalizing these patterns as they are de-
scribed by field linguists. Because there are well-known re-
sults relating the type of the logical formulae to the language-
theoretic and cognitive complexity of the sets of strings they
define, the workbench can be used to establish the complex-
ity of these constraints.

1. INTRODUCTION
Our group has been using formal logic to study aspects of
phonotactics, the sound patterns of the words in human lan-
guages. Using this approach we have been able to establish
a catalog of primitive logical constraints that suffice to de-
fine the patterns of phonological stress characteristic of a
very large fragment of the known human languages. These
primitive constraints can be combined to provide axiomatic
definitions of stress patterns that can be used in a wide vari-
ety of ways: to characterize new or hypothetical stress pat-
terns, to identify gaps and inconsistencies in the linguistic
descriptions of the patterns, to explore the similarities and
differences between stress patterns of individual languages,
to classify languages in terms of the types of constraints,
etc. Less obviously, they can be used to characterize the
language-theoretic complexity of the patterns and to iden-
tify the types of cognitive resources that are required to
recognize them.

∗Faculty Advisor

Axiomatic definitions of this sort have the advantage of be-
ing declarative, unambiguous, fully explicit and generally
intuitively transparent. They do, on the other hand, require
a certain amount of mathematical sophistication to use. In
the work reported here, we have been developing a suite of
computational tools that provide a workbench to support
manipulation of logically defined patterns and, ultimately,
to support working with them in ways that are reasonably
accessible to working phonologists.

In the next section, we sketch the theory underlying the
model-theoretic definition of sets of strings. In Section 3,
we explain how we have been using this to study stress pat-
terns. In Section 4, we describe the logical and automata-
theoretic machinery of the tools and in Section 5, we discuss
the implementation of that machinery. We describe the min-
imalistic user interface of the current state of development
in Section 6, and in Section 7, we consider some of the per-
formance considerations that arise in the implementation.
We close with a brief discussion of our continuing work.

2. MODEL-THEORY OF SUB-REGULAR

STRINGSETS
Model theory is a way of providing precise mathematical
semantics for logical formulae. The circumstances in which
a formula may be true or false are modeled by mathematical
structures that include a domain (or universe)—an arbitrary
set—along with functions and relations on that domain that
model the predicates of the logical formulae.

This provides a way of reasoning about the correctness of
a set of axioms for some aspect of mathematics (number
theory or set theory or geometry, for example) in fully ex-
plicit mathematical terms. It also allows one to explore the
properties of the sets of models that make a particular set
of formulae true and to identify properties that are com-
mon to structures occurring in very different mathematical
contexts.

Conversely, it allows one to explore the expressive power of
various logical languages: the limits on the ability of first-
order logic, for example, to distinguish one structure from
another or the kinds of predicates (less-than, for example,
in contrast to successor) that are needed make those dis-
tinctions within a particular logical language. These kinds
of results fall into the category of descriptive complexity—
the complexity of the logical machinery that is needed to



Local Mixed Piecewise

(+1) (+1, <) (<)

MSO Regular (Reg)

FO Locally Threshold Testable (LTT) Star-Free (SF)

Prop Locally Testable (LT) LT+SF Piecewise Testable (PT)

Restricted Strictly Local (SL) SL+SP Strictly Piecewise (SP)

Table 1: The Sub-Regular Hierarchy. MSO is Monadic Second-Order logic. FO is First-Order logic. Prop
is Propositional logic. Restricted is Propositional Logic restricted to conjunctions of negative literals. Local
is defined in terms of adjacency (+1) or, equivalently, contiguous substrings. Piecewise is defined in terms
of precedence (<) or, equivalently, subsequences. The mixed classes are conjunctions of Local and Piecewise
constraints.

describe a particular property of mathematical structures.

Strikingly, it turns out that there is a very close relationship
between descriptive complexity of this sort and language-
theoretic complexity in terms of automata and formal gram-
mars.

We can model strings as labeled finite initial segments of
the natural numbers, that is, as a finite set of positions,
along with relations for successor and/or less-than and a set
of positions for each symbol in the alphabet identifying the
positions in which that symbol occurs.

In these terms, a set of strings is regular (a regular language)
if and only if it is definable in Monadic Second-Order logic [8,
2, 4] (logic in which one can quantify over subsets as well as
individuals of the domain). If one is limited to First-Order
logic (quantification only over individuals) the sets of strings
that are definable using less-than are Star-Free [7] (definable
with regular expressions that may include complement but
not Kleene-∗), and those definable using only successor are
Locally Threshold Testable [11] (definable in terms of the
number occurrences of particular blocks of symbols, count-
ing only up to a fixed threshold).

If one is limited to only Propositional fragments of logic
there is no way to reason about the specific positions of
symbols in a string, rather one is limited to reasoning only
in terms of whether or not they occur. On this level, the
distinction between reasoning with successor and reason-
ing with less-than becomes a distinction between reasoning
about substrings (contiguous blocks of symbols) and subse-
quences (sequences of symbols that occur in order, but not
necessarily contiguously). Table 1 provides an overview of
this hierarchy of complexity classes based on their descrip-
tive complexity.

These classes form a proper hierarchy; each class is a strict
subclass of the classes above it in the table. On the bottom
two levels, there is a second complexity dimension which
reflects the length of the substrings or subsequences that
are needed to state a constraint. Again, this forms a proper
hierarchy.

From a cognitive perspective, the most useful aspect of these

hierarchies is that each of the classes is characterized by the
type of information about a string that a mechanism needs
to be able to distinguish in order to enforce a constraint in
that class [10]. To be able determine whether a string satis-
fies an SL2 constraint (strictly local with a block size of two)
one needs only to be sensitive to the contiguous blocks of
length two that occur in the string. To be able to determine
whether a string satisfies an LT2 constraint, one needs to
be sensitive to the entire set of contiguous blocks of length
two that occur in it. Thus the relative cognitive capabilities
required (by any mechanism) to enforce a constraint can be
determined by its relative descriptive complexity.

3. AN APPLICATION DOMAIN
For the last few years our group have been using this model-
theoretic approach to study the complexity of the character-
istic patterns of phonological (metrical) stress that occur in
natural languages.

For example, the English words “phonology” and “phono-
logical” share roughly the same three initial syllables, but
those syllables are pronounced differently. “Phonology” is
pronounced with strong (primary) stress on the second syl-
lable and weak (secondary) stress on the first, while “phono-
logical” is pronounced with primary stress on the third syl-
lable and secondary stress on the first. Stress of this sort
can also partly determine the semantics of a word. In En-
glish the noun “record” is pronounced with primary stress
on the initial syllable while in the verb “record” it is on the
final syllable. One does not have to hear these in context to
determine which part of speech is intended.

Each language has specific rules that govern how stress is
distributed in its words. Together, those rules form a system
of constraints that restrict the pronunciation of those words.
This is the metrical stress pattern of the language.1

Our approach is to model the phonological words in a lan-
guage as strings of symbols representing syllables along with

1This shouldn’t be confused with variations in stress on the
words in a sentence. Sentential stress is used, typically, to
identify the topic of an utterance. Contrast, for example:

I did not take the test yesterday
I did not take the test yesterday
I did not take the test yesterday.



their stress. Standardly, the only distinction between sylla-
bles that is relevant to the distribution of stress is syllable
weight. Each language distinguishes weight in its own way,
but generally there are no more than three categories: light
(L), heavy (H) or superheavy (S). Syllables of each type may
have primary stress, secondary stress or no stress. Our al-
phabet has a single symbol for each of these combinations.
A stress pattern corresponds to a set of strings over this al-
phabet. Note that by working in terms of syllable weight
one can compare the stress patterns of languages that have
very different inventories of sounds (phonemes).

We translate those linguistic constraints into logical formu-
lae, getting, for each stress pattern, a set of axioms that
define it model-theoretically as a set of strings. The mini-
mal syntactic complexity of those formulae corresponds to
the language-theoretic complexity of the pattern and char-
acterizes the kinds of cognitive resources an organism must
have in order to detect that pattern. See [10] for a full ex-
planation.

Using a combination of automated [3, 1, 9] and hand tech-
niques our group has analyzed the entirety of Jeffrey Heinz’s
(U. Delaware) catalog of stress patterns [6] which covers
a large percentage of known human languages. In prior
work [12] we have factored the constraints in this catalog
into the co-occurrence of Primitive Constraints, simple con-
straints of easily established complexity. Every one of the
stress patterns can be axiomatized by selecting some set of
these primitive constraints. The complexity of the original
constraint is just the maximum of its primitive factors.

The 402 stress patterns in the database, most of which are
shared by multiple languages, factor into 144 primitive con-
straints, most of which are shared by several patterns. These
144 primitive constraints, in turn, group into 18 categories
of Abstract Constraints [5]. Approximately two-thirds of the
stress patterns are SL. With a couple of exceptions, the rest
are either SF or properly Regular when characterized lo-
cally. From the Piecewise perspective, at least eighteen are
PT. (The SL constraints have not yet been analyzed with
respect to the Piecewise Hierarchy.) More strikingly, very
nearly all of the patterns are either SL+PT or LT+SP, with
the four exceptions being a result of the same primitive con-
straint: that some block of syllables have even length.

4. METHODOLOGY
4.1 Logical Formulae as Automata
At the lowest level of complexity, the atomic logical formu-
lae are either contiguous blocks of k symbols, which we refer
to as k-factors, or subsequences of k symbols, which we re-
fer to as k-subsequences. More complex formulae are built
from Boolean combinations of these atomic formulae. We
describe formulae of only k-factors as local, while those of
only k-subsequences are piecewise. This distinction between
local and piecewise formulae is a natural one from the for-
mal perspective, as it corresponds to the distinction between
successor and less-than.

It also turns out to be significant in describing phonotac-
tic patterns. For example, the implicit constraint that all
words contain no more than one primary stress can be rep-
resented with local formulae only at a high level (LTT) of

b

Σ −{a} ΣΣ −{b}

a b

aΣ −{a}

Σ −{a, b}

Σ

a

Piecewise

Local

Figure 1: Automata for ab as a Local and a Piecewise
formula

the sub-Regular Hierarchy, while with piecewise formulae
it is a much simpler constraint: No primary stress follows
another primary stress. This rephrasal may not seem impor-
tant, but it allows us to use a piecewise formula to represent
the constraint at the lowest (SP) level of the hierarchy.

Both local and piecewise formulae, and thus constraints
based on them, can be represented as finite-state automata.
Examples are given in Figure 1. The set of strings accepted
by the Local automaton is exactly the set of strings that
satisfy the atomic formula ‘ab’ in the local sense, which is
the set of strings that include ‘ab’ as a substring:

{w1abw2 | w1, w2 ∈ Σ∗}.

The set of strings accepted by the Piecewise automaton is
the set of strings that satisfy ‘ab’ in the piecewise sense, the
set of those that include ‘ab’ as a subsequence:

{w1aw2bw3 | w1, w2, w3 ∈ Σ∗}.

The set of strings that satisfy the logical conjunction of two
formulae is the intersection of the sets that satisfy the in-
dividual conjuncts. The corresponding automaton can be
obtained using a standard automaton construction for in-
tersection. Similarly, automata for the logical disjunction
of two formulae can be obtained using a standard construc-
tion for union. In our implementation, both intersection and
union are realized via the product construction.

The set of strings that satisfy the negation of a formula is the
absolute complement of the set that satisfy that formula. In
automata theoretic terms, this can be obtained simply by re-
versing the roles of accepting and non-accepting states, but
only if the automaton is deterministic—if for every string
w ∈ Σ∗ there is exactly one computation of the automaton
in w.

The linear time algorithm for deciding if a given string is
accepted by an automaton also depends on the automaton
being deterministic. But some operations on finite-state au-
tomata are most easily implemented in a way that results
in a non-deterministic result. Determinizing an automaton
results in exponential increase in the automaton’s size, as it
requires building a transition relation from each subset of



its states by a symbol to the set of states reachable. This is
the powerset construction. It is a theorem that this expo-
nential blow-up is, in general, unavoidable; logical formulae
are an exceptionally concise means of defining finite state
automata. The challenge is to avoid blowing up the size of
automata at intermediate stages of a construction only to
simplify them again later.

4.2 Semantic Properties
Satisfaction is the most basic semantic property of formal
languages. If a string meets the conditions a formula de-
scribes, then it is said to satisfy that formula. Moreover,
a string can satisfy a set of formulae, Φ, by satisfying each
formula ϕ ∈ Φ. In order to determine whether a string sat-
isfies a formula, ϕ, we apply the recognition algorithm on
the automaton representing ϕ.

Consistency of a set of formulae is satisfiability of that same
set. A set of formulae Φ is consistent if and only if there
is some string that satisfies Φ. This is true whenever the
conjunction of the formulae is not the empty set.

∧

Φ 6= ∅.

We use this definition when testing for consistency with the
workbench. An automaton representing Φ is constructed,
then we apply the emptiness algorithm to this automaton.
The emptiness algorithm requires testing this automaton
for isomorphism to the automaton representing the empty
language.

Further, logical consequence is defined in terms of consis-
tency. A formula ψ is a logical consequence of Φ if and
only if the set Φ ∪ {ψ} is inconsistent. In our workbench,
we test for this using the complement construction and the
emptiness algorithm:

(

¬ψ
)

∧ (Φ) = ∅.

Finally, independence of formulae is defined in terms of log-
ical consequence. In order to find a set of independent for-
mulae from a set Ψ, we iterate over the formulae and use
the logical consequence algorithm, where ψ is bound to the
current formula, and Φ is bound to the remainder of the set.
If ψ is not a logical consequence of Φ, then it is independent.

5. IMPLEMENTATION
We use Haskell2, a functional programming language, to de-
fine the data types and algorithms used in the workbench.
We believe this choice of programming language facilitated
development of this workbench, because the functional style
and inbuilt set operations are conducive to specifying logical
or mathematical descriptions of problems. Other functional
languages share these properties, but we had prior experi-
ence with Haskell.

In this workbench we represent automata as four-tuples of
the form (Σ, δ, I, F ), where Σ represents the alphabet of the
automaton, δ is a representation of the transition relation,
I is the set of possible initial states, and F is the set of ac-
cepting states. For the sake of computational efficiency, each

2www.haskell.org/haskellwiki/Haskell

automaton also has a Boolean flag indicating whether the
automaton is deterministic. The transition relation speci-
fies a state of departure, a symbol from Σ, and a state of
arrival. The transition relation is only functional when the
automaton is deterministic. A state is simply an object spec-
ified by a label. To allow the workbench to generate graphs
from the automaton-representation of a language, we have
made considerations for including LATEX fragments within
the generated graph. Namely, a symbol is specified in our
workbench by a string rather than a single character.

A string is a sequence of symbols, which is encoded in our
workbench as a standard Haskell list containing symbols.
To test whether a string s is contained in a language L,
each path that s traces along the edges of the graph of L is
generated. The string s is in L if and only if one of these
paths ends in an accepting state.

Like the problem of acceptance, many operations on finite
state automata reduce to generating sets while traversing
graphs. For example, the union or intersection of two lan-
guages, L1 and L2, can be found by first generating graphs,
M1 and M2 that accept all and only the strings in their
respective languages. Beginning in an initial state of each
graph, construct a set of transitions {(q1 × q2, σ, q

′

1 × q′

2)}
where each of q1, q′

1 are states in M1, q2 and q′

2 are states
in M2, and both (q1, σ, q

′

1) and (q2, σ, q
′

2) are transitions in
their respective graphs. The alphabet of the new automa-
ton is simply the union of those of the inputs. The set of
initial states is the set {q1 × q2 : q1 ∈ I1, q2 ∈ I2}. The
only aspect in which the intersection and union of two au-
tomata differ with regard to this algorithm is which states
are accepting. For the case of intersection, F is the set
{q1 × q2 : q1 ∈ F1, q2 ∈ F2}. However, the union relaxes this
condition, requiring only one of q1 and q2 to be accepting
states in the original automata.

Some operations require no traversals at all; finding the
complement of a language requires only computing Q \ F
where Q is the set of all states in the graph generated by
the language. Other operations are much more complicated,
such as constructing a minimal deterministic automaton for
a given language. In order to do this, first the automaton
must be determinized if it is not already.

Determinization requires first removing all edges on ε. This
is done by, for each state q, adding an outbound transition to
any state that can be reached by any number of ε-transitions
from the state of arrival of any edge departing from q. After
these new edges have been generated, the original ε-edges
are removed. The automaton is the converted to a deter-
ministic one via the powerset construction. We then use
Edward F. Moore’s algorithm to minimize the resulting de-
terministic automaton.

To check for isomorphism of two automata, M1 and M2,
the differences M1 \M2 and M2 \M1 are computed. If and
only if both are equal to ∅, then the automata are isomor-
phic. In our workbench, the equality operator is defined as a
check for isomorphism, as that represents equality between
languages. Concatenation and the Kleene star are also im-
plemented, using the standard non-deterministic approach,
resulting in a complete set of operations on automata. Ev-



ery other operation can be specified in terms of the defined
operations.

In fact, having both union and intersection is redundant, as
one can be defined from the other and complement. How-
ever, implementing both directly results in a slightly more
efficient implementation, at the cost of some code duplica-
tion. We provide two functions in the workbench to allow
users to define automata without relying on a particular
internal format. These are singleton string and empty,
which return the automata associated with a language con-
taining only a single string and that containing nothing,
respectively. A function complete symbols fsa exists to
extend the alphabet of a given automaton to include the
specified symbols.

6. A MINIMAL USER INTERFACE
The primary interface to the workbench is GHCi3 coupled
with an external module defining additional functions on
automata. Optionally, a parser may be included to gener-
ate automata from regular expressions. The syntax of the
workbench allows operations to be specified in words or sym-
bolically, e.g. x `implies` y is equivalent to x ==> y. The
available symbolic alternatives are summarized in Table 2.

/\\ Intersection

\\/ Union

==> Implication

<== Reverse implication

<==> Bidirectional implication

<> Concatenation

== Equality

/= Inequality

Table 2: Symbolic operators.

At the time of this writing, there are no symbolic alterna-
tives for unary operations like finding the complement of a
language, or the result of the Kleene star operator. Addi-
tionally, the functions used to test for emptiness or accep-
tance, as well as those used to create automata, are without
symbolic representations. Appendix A provides an example
of how one provides a language to the workbench.

7. PERFORMANCE ISSUES
After performing a few operations on an automaton, the
number of states in the machine increases quickly. Each
intersection or union of automata M1 and M2 results in
an automaton with as many states as the product of the
number of states in M1 with that of M2. Determinization
results in a potentially exponential growth in the number of
states.

This large growth rate is inhibited by multiple methods.
First, there is a flag associated with each automaton de-
scribing whether or not it is deterministic. This prevents

3The interactive environment supplied by the Glasgow
Haskell Compiler. www.haskell.org/ghc

unnecessary determinization. Additionally, the states gen-
erated in the product and powerset constructions are all and
only those that are visited by the input automata. Finally,
a threshold is set where every automaton with more states
than the threshold automatically undergoes the minimiza-
tion algorithm.

This threshold, it turns out, is quite important. Testing
the workbench using both Intel and PowerPC architectures
on multiple sample languages of differing complexities re-
vealed that performance is best when the threshold is set to
around 10, with degradation of more than one hundred per-
cent when the threshold is adjusted to 15. Further testing
may reveal ways to enhance our estimate of an ideal thresh-
old, or perhaps allow us to implement a dynamic threshold.

Another aspect of the workbench that hindered run time was
our use of lists rather than sets to represent the components
of our automata. For the current state of our implementa-
tion, nearly every operation involving a Haskell list compre-
hension against components of the automata was changed
to a “filter, map, reduce” formula that increased both the
maintainability (fewer lines of code) and the computational
efficiency (fewer instructions) of the workbench.

8. FUTURE WORK
We hope to reach feature parity with foma4, another tool
used to interact with finite-state automata and transduc-
ers. After reaching a minimal level of feature parity here,
we hope to support characterizations by First-Order and
Monadic Second-Order logic. Additionally, we hope that
our workbench can be used to perform field-analysis both of
languages and of other similarly characterized patterns.

9. REFERENCES
[1] G. Bailey, M. Edlefsen, M. Visscher, D. Wellcome, and

S. Wibel. Deciding strictly piecewise stringsets. In
Proceedings of the Midstates Conference for
Undergraduate Research in Computer Science and
Mathematics (MCURCSM’09), 2009.

[2] J. R. Büchi. Weak second-order arithmetic and finite
automata. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 6:66–92, 1960.

[3] M. Edlefsen, D. Leeman, N. Myers, N. Smith,
M. Visscher, and D. Wellcome. Deciding strictly local
(SL) languages. In J. Breitenbucher, editor,
Proceedings of the Midstates Conference for
Undergraduate Research in Computer Science and
Mathematics (MCURCSM’08), pages 66–73, 2008.

[4] C. C. Elgot. Decision problems of finite automata and
related arithmetics. Transactions of the American
Mathematical Society, 98:21–51, 1961.

[5] M. Fero, D. Lambert, S. Wibel, and J. Rogers.
Abstract categories of phonotactic constraints. In
National Conference on Undergraduate Research, 2014.

[6] J. Heinz. UD phonology lab stress pattern database.
http://phonology.cogsci.udel.edu/dbs/stress/, 2012.

[7] R. McNaughton and S. Papert. Counter-Free
Automata. MIT Press, Cambridge, MA, 1971.

[8] Y. T. Medvedev. On the class of events representable
in a finite automaton. In E. F. Moore, editor,

4code.google.com/p/foma



Sequential Machines—Selected Papers, pages 215–227.
Addison-Wesley, 1964. Originally in Russian in
Avtomaty (1956), pp. 385–401.

[9] J. Rogers, J. Heinz, G. Bailey, M. Edlefsen,
M. Visscher, D. Wellcome, and S. Wibel. On
languages piecewise testable in the strict sense. In
C. Ebert, G. Jäger, and J. Michaelis, editors, The
Mathematics of Language: Revised Selected Papers
from the 10th and 11th Biennial Conference on the
Mathematics of Language, volume 6149 of
LNCS/LNAI, pages 255–265. FoLLI/Springer, 2010.

[10] J. Rogers, J. Heinz, M. Fero, J. Hurst, D. Lambert,
and S. Wibel. Cognitive and sub-regular complexity.
In G. Morrill and M.-J. Nederhof, editors, Formal
Grammar 2012, volume 8036 of Lecture Notes in
Computer Science, pages 90–108. Springer, 2012.

[11] W. Thomas. Classifying regular events in symbolic
logic. Journal of Computer and Systems Sciences,
25:360–376, 1982.

[12] S. Wibel, M. Fero, J. Hurst, D. Lambert, and
J. Rogers. Classifying relative complexity of factored
stress patterns. In J. Heinz, H. van der Hulst, and
R. Goedemans, editors, Univ. of Delaware Conference
on Stress and Accent, 2012.

APPENDIX

A. CAMBODIAN AND THE WORKBENCH
Cambodian, as described in [6], has the following constraints:

• Primary stress falls on the final syllable,

• Secondary stress falls on all heavy syllables,

• Light syllables only occur immediately following heavy
syllables, and

• Light monosyllables do not occur.

Additionally, it is assumed that every language has the con-
straint that exactly one syllable of primary stress occur in
any word. Given these constraints, we define sets of logical
formulae to represent each constraint. What follows is our
characterization of the language.

In order to require a syllable of primary stress to occur at
the end of a word, there are actually four constraints that
must be met:

No final unstressed syllables
¬σ⋉ noUssEnd = complement ((star xss) <> uss)

No final secondary-stressed syllables
¬ σ̀⋉ noSssEnd = complement ((star xss) <> uss)

Nothing follows primary-stressed syllables

¬ σ́
∗

σ noPssXss = complement (pss <> xss)

No empty words
¬ ⋊⋉ noEmpty = contains xss

The requirement that all heavy syllables have (at least) sec-
ondary stress is simpler, requiring only what it claims to:

No unstressed heavy syllables
¬H noUsH = complement (ush)

Requiring that light syllables occur only immediately after
a heavy syllable is a combination of two constraints:

No two consecutive light syllables

¬
∗

L
∗

L noXsLXsL = complement (xsl <> xsl)

No intial light syllables

¬ ⋊

∗

L noStXsL = complement (xsl <> (star xss))

In fact, this is all that is necessary to describe Cambodian.
The language is fully described by the conjuction of these
constraints, as each of the others is a logical consequence of
this set. Logically the conjunction is:
(

¬ σ ⋉

)

∧
(

¬ σ̀ ⋉

)

∧
(

¬ σ́
∗

σ

)

∧
(

¬⋊⋉

)

∧
(

¬ H

)

∧
(

¬
∗

L

∗

L

)

∧
(

¬⋊
∗

L

)

while using our workbench it is:
cambodian = noUssEnd /\\ noSssEnd /\\

noPssXss /\\ noEmpty /\\
noUsH /\\ noXsLXsL /\\ noStXsL


