
Some Notes on Piecewise Local Sets
(Supplement to: A logical and computational methodology for exploring

systems of phonotactic constraints)
January 5, 2019

Dakotah Lambert

Earlham College

Richmond, Indiana, USA

djlambe11@earlham.edu

James Rogers

Earlham College

Richmond, Indiana, USA

jrogers@cs.earlham.edu

?

PTLT

co(SL+SP)

Prop

Strict

FO

Reg

SPSL coSL coSP

SF

LTT

SPL

PLT

coSPL

LT+PT

SL+SP

MSO

⊳, <⊳ <

Figure 1: The Piecewise Local Hierarchy

A The Piecewise Local Hierarchy

From a model-theoretic perspective, a string is just

a finite linearly ordered domain with a unary pred-

icate for each alphabet symbol that picks out the

subset of the domain at which that symbol oc-

curs. The signature also includes binary predicates

for successor (adjacency, denoted here by ⊳ or

+1), for less-than (precedence, denoted < or . .)

or both.

The Piecewise Local Hierarchy is a hierarchy

of classes of stringsets distinguished by definabil-

ity with respect to these signatures using logical

machinery of varying strength. On the Local side

of the hierarchy (LTT, LT, SL, coSL) the signa-

ture is reduced to just successor. On the Piecewise

side it is reduced to just less-than. Formulae in the

classes in the center of the hierarchy can employ

both.

At the First Order level definitions are quantifi-

cational formulae in which variables range over

positions in the domain. At this level, ⊳ is de-

finable from < but not v.v. The sets of strings that

are First Order definable over a signature includ-

ing only ⊳ are all and only the Locally Threshold

Testable sets, while those that are First Order de-

finable over a signature that includes < are all and

only the Star-Free sets.

At the Monadic Second Order level, defini-

tions are quantificational formulae with two sorts

of variables: those that range over positions and

those that range over sets of positions. At this level

it makes no difference which predicate defines the

order, ⊳ and < are each definable from the other.

Sets of strings MSO definable over strings are all

and only the Regular stringsets.

At the weaker levels of the hierarchy quantifi-

cation is not available. Definitions are Proposi-

tional formulae in which the atomic propositions

are factors, fragments of the string that are con-

nected in the graph-theoretic sense, i.e., every po-

sition is reachable from every other position by a

sequence of the ordering relations taken in either

direction.

In the Local classes, since the domain is ordered

by successor, these factors are substrings: se-

quences of symbols that occur consecutively in the

string. In these classes the string boundaries are

significant. We mark them with adjoined points

denoted ⋊ and ⋉ with the first position in the

string as the successor of ⋊ and ⋉ as the succes-

sor of the last position. The size of the factor is the

length of the substring including the endmarkers,

if any.

The set of local factors of length k or less that

occur in a string is denoted F⊳

k .

The Piecewise classes are ordered by less-than.

These factors are subsequences: sequences of

symbols that occur in order in the string, but not

necessarily consecutively. Since there is no built-

in sense of adjacency, the string boundaries are

not significant. Again, the size of the factor is the

length of the subsequence.

The set of piecewise factors of length k or less

that occur in a string is denoted F<
k

.

Each of these atomic propositions is satisfied

in a string iff the factor occurs somewhere in the

string.

At the Strict level, the stringsets are definable in

terms of their forbidden factors the factors which

may not occur in the string. Hence these sets are

definable with formulae that are conjunctions of

negative literals (negated factors).

The co-Strict classes are stringsets that are com-

plements of Strictly definable stringsets. Hence

these sets are definable with formulae that are dis-

junctions of positive literals. Note that, since these

are disjunctions, no single factor is required to oc-

cur in every string, but every string must include

at least one of the factors.

The Testable classes are Boolean combinations

of the Strictly definable stringsets, hence these

sets are definable by arbitrary propositional for-

mulae over factors of the appropriate type. It

should be noted that the Testable classes are not

just the union of their respective Strict and co-

Strict classes. At the Strict level negation applies

only to individual factors; at the Testable level it

applies to arbitrary formulae.

Characterizing the Stress Patterns in

StressTyp2

As we have seen in the main paper, the stress

pattern of Yidin (as defined in StressTyp2) is

definable by a combination of Strict Local, co-

Strict Local and Strict Piecewise constraints. Con-

straints in these classes (and the co-Strict Piece-

wise constraints) are extremely simple cognitively,

requiring only the recognition of individual fac-

tors in the string in isolation. (In contrast to the

Testable constraints, which depend on the entire

set of factors occurring in the string.) The work-

bench described in the paper includes a tool that

can, given a finite-state automaton recognizing a

pattern, extract sets of strict and co-strict local and

piecewise factors that approximate that pattern. If

the pattern is definable at this level the approxima-

tion is exact, otherwise it is minimal in a particular

sense.

Using this, we have shown that nearly all

of these stress patterns are definable by co-

occurrence of strict constraints. (In the figure the

co-occurence classes are indicated using ‘+′. Only

a few of these classes are included there.) The

exceptions include two lects of Arabic in which

unstressed syllables with secondary stress are re-

quired to alternate in certain contexts, but in which

the secondary stress does not surface. Conse-

quently, certain spans of unstressed syllables are

required to be of odd length. This is a strictly reg-

ular pattern.

The remaining exceptions, certain lects of Bho-

jpuri, Buriat, Cheremis, Hindi, Mongolean and

Sindhi involve a constraint of the form H́⋉ →
¬X (syllables of a certain type do not occur in

words with a final primary stressed heavy sylla-

ble). While this can be expressed with an LT2 for-

mula, it cannot be expressed with conjunctions of

strict and co-strict constraints using adjacency or

precedence alone. If we consider factors of mod-

els with both adjacency and precedence, though,

it can be expressed as ¬(X . . H́⋉) (where ‘ . .′ de-

notes precedence). This is a Strict Piecewise Local

constraint, one in which both precedence and ad-

jacency occur in the same factor.

Propositional formulae over factors of this

mixed type form the middle of the hierarchy, the

Piecewise Local stringsets. These formulae have

two parameters: SPLj,k and PLTj,k, where the fac-

tors include no more than j pieces, each of which

is no more than k symbols wide: ¬(X . . H́⋉) is

a SPL2,2 constraint. (SLk = SPL1,k and SPk =
SPLk,1.) As with the other types of strict con-

straints, recognizing violations of SPL constraints

still involves only being sensitive to the occurrence

of specific factors in isolation, thus they are ex-

tremely simple from a cognitive perspective. With

the exception of the Arabic outliers, all of the lects

that are represented by automata in the StressTyp2

database are definable with the co-occurrence of

SPL and coSL formulae.

Abstract Characterization of SPL and

PLT

Let F
<,⊳
j,k (w) be the set of factors of w with no

more than j pieces, none of which is more than k

symbols wide.

SPLj,k is defined by conjunctions of negative

literals in F
<,⊳
j,k

({⋊}Σ∗{⋉}).
PLTj,k is defined by Boolean combinations of

SPLj,k stringsets.

Theorem 1 (Piecewise Local Testability)

Every class L of stringsets that is defined by

Boolean formulae over Piecewise Local factors is

characterized by the following way:

L ∈ L ⇔

(F<,⊳
j,k (w) = F

<,⊳
j,k (v) ⇒ (w ∈ L ⇔ v ∈ L)).

This simply follows from the definition of satis-

faction for piecewise local factors.

Theorem 2 (Downward Closure) Every class of

stringsets L that is defined by conjunctions of neg-

ative literal factors is closed in the following way:

L ∈ L ⇒

(F<,⊳
j,k (v) ⊆ F

<,⊳
j,k (w) ⇒ (w ∈ L ⇒ v ∈ L)).

This follows from the fact that strict formulae are

negative constraints. If a set of factors does not

include a forbidden factor, then no subset of that

set does either.

While downward closure characterizes SPL, it

has a weakness in that it characterizes sets of

strings in terms of a property in the space of sets of

factors, ordered by subset. But that space of sets

of factors is richer than the corresponding space of

sets of strings: not every set of factors is realized

by a well-formed string.

This is not an issue for the SP stringsets, since

every subsequence of a string is also a string. But

it is an issue for SL since an arbitrary subset of

the set of local factors in a string may not include

sufficient factors to build a string starting with ⋊

and ending with ⋉. (Indeed, it could fail to in-

clude any initial or final factors.) Consequently,

SL is better characterized by Suffix Substitution

Closure, which guarantees that the integrity of the

strings is maintained. SPL requires a similar clo-

sure condition based directly on the set of strings.

The following is a necessary condition for a

stringset to be SPL. While the structure of a proof

of sufficiency is reasonably clear, we have not yet

filled it out. Consequently the hypothesis may

need to be strengthened slightly before we can es-

tablish it as a full characterization.

Theorem 3 (Generalized SSC) If L ∈ SPLj, k

then for all x ∈ Σk, u1, u2 ∈ {⋊}Σ∗, v1, v2 ∈
Σ∗{⋉}:

(u1 · x · v1 ∈ L

∧ u2 · x · v2 ∈ L

∧ (F<,⊳
j,k (u1) ⊆ F

<,⊳
j,k (u2)

∨ F
<,⊳
j,k (v2) ⊆ F

<,⊳
j,k (v1)))

⇒ u1 · x · v2 ∈ L.

Proof 1 Let f ∈ F
<,⊳
j,k (u1 ·x ·v2). Then, by cases:

• If f ∈ F
<,⊳
j,k (u1 ·x) then f ∈ F

<,⊳
j,k (u1 ·x ·v1)

and f is not a forbidden factor of L.

• The f ∈ F
<,⊳
j,k

(x · v2) case is similar.

• Otherwise f = f1 . . f2 where f1 ∈ F
<,⊳
j,k (u1 ·

x) and f2 ∈ F
<,⊳
j,k

(x·v2). Then neither f1 nor

f2 is a forbidden factor of L and, a fortiori,

neither is f1 . . f2.

Since none of the (j, k)-factors of u1 · x · v2 is

forbidden by L, u1 · x · v2 ∈ L.

Example

Since to show that a stringset is in the class SPL

one needs only to demonstrate an SPL formula

that defines it, the primary value of the abstract

characterization is in establishing that a given

stringset is not SPL. For this a necessary condi-

tion is all that is needed. The following example

shows that a pattern based on our impression of

Latin liquid dissimulation is not SPL. The coun-

terexample could be sharpened, but we have not

bothered to. We believe that a similar counterex-

ample will suffice to show that it is not PLT either.

Latin liquid dissimulation (LLD): every pair

of ‘l’s is separated by at least one ‘r’ and every

pair of ‘r’s is separated by at least one ‘l’:

(∀x, y)[(x < y ∧ l(x) ∧ l(y))
→ (∃z)[x < z ∧ z < y ∧ r(z)]]

∧
(∀x, y)[(x < y ∧ r(x) ∧ r(y))

→ (∃z)[x < z ∧ z < y ∧ l(z)]]

Let

w1 = ⋊(sjklsjkr)jk · sjk · lsjkr(sjklsjkr)⋉

and

w2 = ⋊(sjklsjkr)jksjkl · sjk · r(sjklsjkr)⋉.

Both w1, w2 ∈ L, but

⋊(sjklsjkr)jk · sjk · r(sjklsjkr)⋉ 6∈ L.

Therefore, LLD is not SPLj, k for any j and k.

